
Solve the integration \[\int {\dfrac{{3x + 1}}{{2{x^2} + x + 1}}} dx = ................\]
A) \[\dfrac{3}{4}\log (2{x^2} + x + 1) + \dfrac{1}{{2\sqrt {\left( 7 \right)} }}{\tan ^{ - 1}}\dfrac{{4x + 1}}{{\sqrt {\left( 7 \right)} }} + C\].
B) \[\dfrac{4}{3}\log (2{x^2} + x + 1) + \dfrac{1}{{2\sqrt {\left( 7 \right)} }}{\tan ^{ - 1}}\dfrac{{3x + 1}}{{\sqrt {\left( 7 \right)} }} + C\].
C) \[\dfrac{4}{3}\log (2{x^2} + x + 1) + \dfrac{1}{{2\sqrt {\left( 7 \right)} }}{\cot ^{ - 1}}\dfrac{{3x + 1}}{{\sqrt {\left( 7 \right)} }} + C\]
D) None of these
Answer
460.8k+ views
Hint: First we have to know the integration is the inverse process of the differentiation. The given integrand can be integrated by substitution method. First we have to convert the integrand in the form such that it can be integral by using any integration methods.
Complete step by step solution:
Given \[\int {\dfrac{{3x + 1}}{{2{x^2} + x + 1}}} dx\]
Let\[I = \int {\dfrac{{3x + 1}}{{2{x^2} + x + 1}}} dx\] --(1)
Multiply and divided by \[3\] in the integrand of the equation (1), we get
\[I = \int {\left( {\dfrac{3}{3} \times \dfrac{{3x + 1}}{{2{x^2} + x + 1}}} \right)} dx\]
\[ \Rightarrow I = \int {\left( {3 \times \dfrac{{\left( {x + \dfrac{1}{3}} \right)}}{{2{x^2} + x + 1}}} \right)} dx\]--(2)
Again, multiply and divided by \[4\] in the integrand of the equation (2), we get
\[I = \int {\left( {\dfrac{3}{4} \times \dfrac{{\left( {4x + \dfrac{4}{3}} \right)}}{{2{x^2} + x + 1}}} \right)} dx\]----(3)
The equation (3) can be rewritten as
\[I = \int {\left( {\dfrac{3}{4} \times \dfrac{{\left( {4x + 1 - 1 + \dfrac{4}{3}} \right)}}{{2{x^2} + x + 1}}} \right)} dx\]----(4)
Slitting the integrand in the equation (4), we get
\[I = \dfrac{3}{4}\left[ {\int {\left( {\dfrac{{4x + 1}}{{2{x^2} + x + 1}} + \dfrac{1}{{3\left( {2{x^2} + x + 1} \right)}}} \right)} dx} \right]\]----(5)
Since we know that integration of the sum of two functions is equal to the sum of the integration of two functions. Then the equation (5) becomes
\[I = \dfrac{3}{4}\int {\dfrac{{4x + 1}}{{2{x^2} + x + 1}}dx} + \dfrac{1}{4}\int {\left( {\dfrac{1}{{\left( {2{x^2} + x + 1} \right)}}} \right)} dx\].
Let \[I = {I_1} + {I_2}\]-----(6)
Where, \[{I_1} = \dfrac{3}{4}\int {\dfrac{{4x + 1}}{{2{x^2} + x + 1}}dx} \]---(7) and \[{I_2} = \dfrac{1}{4}\int {\left( {\dfrac{1}{{\left( {2{x^2} + x + 1} \right)}}} \right)} dx\]---(8)
Put \[2{x^2} + x + 1 = t\] in the equation (7) and we get \[\left( {4x + 1} \right)dx = dt\]. Then the equation (7) becomes
\[{I_1} = \dfrac{3}{4}\int {\dfrac{1}{t}dt} \]
\[ \Rightarrow \]\[{I_1} = \dfrac{3}{4}\log t + {C_1}\]----(9)
Replace \[t = 2{x^2} + x + 1\] in the equation (9), we get
\[{I_1} = \dfrac{3}{4}\log \left( {2{x^2} + x + 1} \right) + {C_1}\] Where \[{C_1}\] is an integration constant
Multiply and divided by \[2\] in the equation (8), we get
\[{I_2} = \int {\left( {\dfrac{2}{{\left( {16{x^2} + 8x + 8} \right)}}} \right)} dx\]---(10)
Since \[{\left( {4x + 1} \right)^2} = 16{x^2} + 8x + 1\], then the equation (10) becomes
\[{I_2} = \int {\left( {\dfrac{2}{{{{\left( {4x + 1} \right)}^2} + {{\left( {\sqrt 7 } \right)}^2}}}} \right)} dx\]---(11)
Since we know that \[\int {\left( {\dfrac{1}{{{a^2} + {x^2}}}} \right)} dx = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\], then the equation (11) becomes
\[{I_2} = 2 \times \dfrac{1}{{\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) \times \dfrac{1}{4} + {C_2}\]
\[ \Rightarrow \]\[{I_2} = \dfrac{1}{{2\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) + {C_2}\]------(12)
Where \[{C_2}\] is an integration constant.
Hence the equation (6) becomes
\[I = \dfrac{3}{4}\log \left( {2{x^2} + x + 1} \right) + \dfrac{1}{{2\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) + {C_1} + {C_2}\]
\[ \Rightarrow \]\[\int {\dfrac{{3x + 1}}{{2{x^2} + x + 1}}} dx = \dfrac{3}{4}\log \left( {2{x^2} + x + 1} \right) + \dfrac{1}{{2\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) + C\]
Where \[C = {C_1} + {C_2}\] is an integration constant.
Hence,Option (A) is correct.
Note:
Note that the substitution method used when the derivative of the substitution function must exist in the given integrand. Every integral function is differentiable and continuous but the converse is not true. Similarly, every differentiable function is continuous but the converse is not true.
Complete step by step solution:
Given \[\int {\dfrac{{3x + 1}}{{2{x^2} + x + 1}}} dx\]
Let\[I = \int {\dfrac{{3x + 1}}{{2{x^2} + x + 1}}} dx\] --(1)
Multiply and divided by \[3\] in the integrand of the equation (1), we get
\[I = \int {\left( {\dfrac{3}{3} \times \dfrac{{3x + 1}}{{2{x^2} + x + 1}}} \right)} dx\]
\[ \Rightarrow I = \int {\left( {3 \times \dfrac{{\left( {x + \dfrac{1}{3}} \right)}}{{2{x^2} + x + 1}}} \right)} dx\]--(2)
Again, multiply and divided by \[4\] in the integrand of the equation (2), we get
\[I = \int {\left( {\dfrac{3}{4} \times \dfrac{{\left( {4x + \dfrac{4}{3}} \right)}}{{2{x^2} + x + 1}}} \right)} dx\]----(3)
The equation (3) can be rewritten as
\[I = \int {\left( {\dfrac{3}{4} \times \dfrac{{\left( {4x + 1 - 1 + \dfrac{4}{3}} \right)}}{{2{x^2} + x + 1}}} \right)} dx\]----(4)
Slitting the integrand in the equation (4), we get
\[I = \dfrac{3}{4}\left[ {\int {\left( {\dfrac{{4x + 1}}{{2{x^2} + x + 1}} + \dfrac{1}{{3\left( {2{x^2} + x + 1} \right)}}} \right)} dx} \right]\]----(5)
Since we know that integration of the sum of two functions is equal to the sum of the integration of two functions. Then the equation (5) becomes
\[I = \dfrac{3}{4}\int {\dfrac{{4x + 1}}{{2{x^2} + x + 1}}dx} + \dfrac{1}{4}\int {\left( {\dfrac{1}{{\left( {2{x^2} + x + 1} \right)}}} \right)} dx\].
Let \[I = {I_1} + {I_2}\]-----(6)
Where, \[{I_1} = \dfrac{3}{4}\int {\dfrac{{4x + 1}}{{2{x^2} + x + 1}}dx} \]---(7) and \[{I_2} = \dfrac{1}{4}\int {\left( {\dfrac{1}{{\left( {2{x^2} + x + 1} \right)}}} \right)} dx\]---(8)
Put \[2{x^2} + x + 1 = t\] in the equation (7) and we get \[\left( {4x + 1} \right)dx = dt\]. Then the equation (7) becomes
\[{I_1} = \dfrac{3}{4}\int {\dfrac{1}{t}dt} \]
\[ \Rightarrow \]\[{I_1} = \dfrac{3}{4}\log t + {C_1}\]----(9)
Replace \[t = 2{x^2} + x + 1\] in the equation (9), we get
\[{I_1} = \dfrac{3}{4}\log \left( {2{x^2} + x + 1} \right) + {C_1}\] Where \[{C_1}\] is an integration constant
Multiply and divided by \[2\] in the equation (8), we get
\[{I_2} = \int {\left( {\dfrac{2}{{\left( {16{x^2} + 8x + 8} \right)}}} \right)} dx\]---(10)
Since \[{\left( {4x + 1} \right)^2} = 16{x^2} + 8x + 1\], then the equation (10) becomes
\[{I_2} = \int {\left( {\dfrac{2}{{{{\left( {4x + 1} \right)}^2} + {{\left( {\sqrt 7 } \right)}^2}}}} \right)} dx\]---(11)
Since we know that \[\int {\left( {\dfrac{1}{{{a^2} + {x^2}}}} \right)} dx = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\], then the equation (11) becomes
\[{I_2} = 2 \times \dfrac{1}{{\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) \times \dfrac{1}{4} + {C_2}\]
\[ \Rightarrow \]\[{I_2} = \dfrac{1}{{2\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) + {C_2}\]------(12)
Where \[{C_2}\] is an integration constant.
Hence the equation (6) becomes
\[I = \dfrac{3}{4}\log \left( {2{x^2} + x + 1} \right) + \dfrac{1}{{2\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) + {C_1} + {C_2}\]
\[ \Rightarrow \]\[\int {\dfrac{{3x + 1}}{{2{x^2} + x + 1}}} dx = \dfrac{3}{4}\log \left( {2{x^2} + x + 1} \right) + \dfrac{1}{{2\sqrt 7 }}{\tan ^{ - 1}}\left( {\dfrac{{4x + 1}}{{\sqrt 7 }}} \right) + C\]
Where \[C = {C_1} + {C_2}\] is an integration constant.
Hence,Option (A) is correct.
Note:
Note that the substitution method used when the derivative of the substitution function must exist in the given integrand. Every integral function is differentiable and continuous but the converse is not true. Similarly, every differentiable function is continuous but the converse is not true.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
