
Solve the following$\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
Answer
598.8k+ views
Hint: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What does the Hymn Ek ONKAR SATNAM KARTA PURAKH NIRBHAU class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

Differentiate between exergonic and endergonic rea class 12 biology CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

