
Solve the following$\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
Answer
624.6k+ views
Hint: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

