Solve the following$\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
Answer
384.6k+ views
Hint: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
The given determinant is $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
We need to expand the determinant to get an equation.
While expanding a determinant, the signs are as follows,
$\left| {\begin{array}{*{20}{c}}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}} \right|$
Choose a row or a column and start taking out one term after another and multiplying it with the
minors along with the corresponding sign.
When a term is taken out, the determinant leaving out the row and column of the term taken out
is called the minor.
Let us expand $\left| {\begin{array}{*{20}{c}}
x&2&0 \\
2&{ - x}&0 \\
0&3&x
\end{array}} \right| = 0$
$ + x\left| {\begin{array}{*{20}{c}}
{ - x}&0 \\
3&x
\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}
2&0 \\
0&x
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
2&{ - x} \\
0&3
\end{array}} \right| = 0$
Now we need to expand the $2 \times 2$determinant,
$x( - x(x) - 0(3)) - 2(2(x) - 0(0)) + 0 = 0$
$\begin{gathered}
x( - {x^2} - 0) - 2(2x - 0) + 0 = 0 \\
- {x^3} - 4x = 0 \\
{x^3} + 4x = 0 \\
x({x^2} + 4) = 0 \\
x = 0,{x^2} = - 4 \\
\end{gathered} $
${x^2} = - 4$ is not possible because it yields imaginary roots.
$x = 0$ is the correct answer.
Note: Expanding the determinant yields an equation in terms of $x$, which then can be solved to determine the value of $x$. The signs, while expanding the determinant can be tricky.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
