
Solve the following simultaneous equations:
$
\dfrac{{{\text{27}}}}{{{\text{x - 2}}}}{\text{ + }}\dfrac{{{\text{31}}}}{{{\text{y + 3}}}}{\text{ = 85}} \\
\dfrac{{{\text{31}}}}{{{\text{x - 2}}}}{\text{ + }}\dfrac{{{\text{27}}}}{{{\text{y + 3}}}}{\text{ = 89}} \\
$
Answer
518.7k+ views
Hint: In order to solve this problem you need to assume variables for $\dfrac{1}{{x - 2\,\,}}\,\,\,\,{\text{and }}\dfrac{1}{{y + 3}}$. Then solving further for getting the values of variables. Doing this will solve your problem.
Complete step-by-step answer:
The given equations are
$
\Rightarrow \dfrac{{{\text{27}}}}{{{\text{x - 2}}}}{\text{ + }}\dfrac{{{\text{31}}}}{{{\text{y + 3}}}}{\text{ = 85}} \\
\Rightarrow \dfrac{{{\text{31}}}}{{{\text{x - 2}}}}{\text{ + }}\dfrac{{{\text{27}}}}{{{\text{y + 3}}}}{\text{ = 89}} \\
$
We need to find the value of x and y.
Let us assume $\dfrac{{\text{1}}}{{{\text{x - 2}}}} = {\text{X}}\,\,\,{\text{and }}\dfrac{{\text{1}}}{{{\text{y + 3}}}}{\text{ = Y}}$
Then the above equation will be:
27X + 31Y = 85…………(1)
31X + 27Y = 89…………(2)
The value of X from equation (1) can be written as:
${\text{X = }}\dfrac{{{\text{85 - 31Y}}}}{{{\text{27}}}}$
Putting the value of X in equation (2) and solving we get:
$
{\text{31}}\left( {\dfrac{{{\text{85 - 31Y}}}}{{{\text{27}}}}} \right){\text{ + 27Y = 89}} \\
\Rightarrow \dfrac{{{\text{85(31) - (31)31Y + 27(27Y)}}}}{{{\text{27}}}}{\text{ = 89}} \\
\Rightarrow \dfrac{{{\text{2635 - 961Y + 729Y}}}}{{{\text{27}}}}{\text{ = 89}} \\
\Rightarrow {\text{2635 - 232Y = 89(27) = 2403}} \\
\Rightarrow {\text{ - 232Y = 2403 - 2635}} \\
\Rightarrow {\text{232Y = 232}} \\
\Rightarrow {\text{Y = 1}} \\
$
On putting the value of Y = 1 in equation (1) we get:
${\text{X = }}\dfrac{{{\text{85 - 31(1)}}}}{{{\text{27}}}}{\text{ = }}\dfrac{{{\text{54}}}}{{{\text{37}}}}{\text{ = 2}}$
So, the value of X = 2 and that of Y = 1.
We have assumed $\dfrac{{\text{1}}}{{{\text{x - 2}}}} = {\text{X}}\,\,\,{\text{and }}\dfrac{{\text{1}}}{{{\text{y + 3}}}}{\text{ = Y}}$.
So, on putting the value of X and Y in above equations we get,
\[
\dfrac{{\text{1}}}{{{\text{x - 2}}}}{\text{ = 2}}\,\,\,{\text{and }}\dfrac{{\text{1}}}{{{\text{y + 3}}}}{\text{ = 1}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{2}}}{\text{ = x - 2}}\,\,{\text{and }}\dfrac{1}{1} = {\text{y + 3}} \\
\Rightarrow {\text{x = }}\dfrac{{\text{1}}}{{\text{2}}} + 2 = \dfrac{5}{2}\,\,\,{\text{and y = 1 - 3 = - 2}} \\
\]
Hence, the value of x = \[\dfrac{5}{2}\] and that of y = -2.
Note: To solve such problems in which you have asked to solve the equations you need to find the values of variables present in the equations. Remember the number of unknown variables must be equal to the number of equations. We can solve these equations using various methods. Then solving algebraically we get the value of the variables. Doing this will solve your problem.
Complete step-by-step answer:
The given equations are
$
\Rightarrow \dfrac{{{\text{27}}}}{{{\text{x - 2}}}}{\text{ + }}\dfrac{{{\text{31}}}}{{{\text{y + 3}}}}{\text{ = 85}} \\
\Rightarrow \dfrac{{{\text{31}}}}{{{\text{x - 2}}}}{\text{ + }}\dfrac{{{\text{27}}}}{{{\text{y + 3}}}}{\text{ = 89}} \\
$
We need to find the value of x and y.
Let us assume $\dfrac{{\text{1}}}{{{\text{x - 2}}}} = {\text{X}}\,\,\,{\text{and }}\dfrac{{\text{1}}}{{{\text{y + 3}}}}{\text{ = Y}}$
Then the above equation will be:
27X + 31Y = 85…………(1)
31X + 27Y = 89…………(2)
The value of X from equation (1) can be written as:
${\text{X = }}\dfrac{{{\text{85 - 31Y}}}}{{{\text{27}}}}$
Putting the value of X in equation (2) and solving we get:
$
{\text{31}}\left( {\dfrac{{{\text{85 - 31Y}}}}{{{\text{27}}}}} \right){\text{ + 27Y = 89}} \\
\Rightarrow \dfrac{{{\text{85(31) - (31)31Y + 27(27Y)}}}}{{{\text{27}}}}{\text{ = 89}} \\
\Rightarrow \dfrac{{{\text{2635 - 961Y + 729Y}}}}{{{\text{27}}}}{\text{ = 89}} \\
\Rightarrow {\text{2635 - 232Y = 89(27) = 2403}} \\
\Rightarrow {\text{ - 232Y = 2403 - 2635}} \\
\Rightarrow {\text{232Y = 232}} \\
\Rightarrow {\text{Y = 1}} \\
$
On putting the value of Y = 1 in equation (1) we get:
${\text{X = }}\dfrac{{{\text{85 - 31(1)}}}}{{{\text{27}}}}{\text{ = }}\dfrac{{{\text{54}}}}{{{\text{37}}}}{\text{ = 2}}$
So, the value of X = 2 and that of Y = 1.
We have assumed $\dfrac{{\text{1}}}{{{\text{x - 2}}}} = {\text{X}}\,\,\,{\text{and }}\dfrac{{\text{1}}}{{{\text{y + 3}}}}{\text{ = Y}}$.
So, on putting the value of X and Y in above equations we get,
\[
\dfrac{{\text{1}}}{{{\text{x - 2}}}}{\text{ = 2}}\,\,\,{\text{and }}\dfrac{{\text{1}}}{{{\text{y + 3}}}}{\text{ = 1}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{2}}}{\text{ = x - 2}}\,\,{\text{and }}\dfrac{1}{1} = {\text{y + 3}} \\
\Rightarrow {\text{x = }}\dfrac{{\text{1}}}{{\text{2}}} + 2 = \dfrac{5}{2}\,\,\,{\text{and y = 1 - 3 = - 2}} \\
\]
Hence, the value of x = \[\dfrac{5}{2}\] and that of y = -2.
Note: To solve such problems in which you have asked to solve the equations you need to find the values of variables present in the equations. Remember the number of unknown variables must be equal to the number of equations. We can solve these equations using various methods. Then solving algebraically we get the value of the variables. Doing this will solve your problem.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

What is the difference between Atleast and Atmost in class 9 maths CBSE
