
Solve the following non-homogeneous system of linear equations by the determinant method.
\[2x+y-z=4\] ,
\[x+y-2z=0\] ,
\[3x+2y-3z=4\] .
Answer
589.5k+ views
Hint: First of all make a matrix \[\Delta \] having coefficients of x in the \[{{1}^{st}}\] row, coefficient of y in the \[{{2}^{nd}}\] row, and coefficient of z in the \[{{3}^{rd}}\] row. Now, get the determinant value of \[{{\Delta }_{1}}\] by replacing the \[{{1}^{st}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4. Similarly, get the determinant value of \[{{\Delta }_{2}}\] by replacing the \[{{2}^{nd}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4. Similarly, get the determinant value of \[{{\Delta }_{3}}\] by replacing the \[{{3}^{rd}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4. Now, get the values of x, y, and z by using the formula \[x=\dfrac{{{\Delta }_{1}}}{\Delta }\] , \[y=\dfrac{{{\Delta }_{2}}}{\Delta }\] , and \[z=\dfrac{{{\Delta }_{3}}}{\Delta }\] and then, solve it further.
Complete step-by-step answer:
According to the question, we have three equations that are linear in terms of x, y, and z.
\[2x+y-z=4\] ………………………(1)
\[x+y-2z=0\] …………………..(2)
\[3x+2y-3z=4\] ……………………..(3)
First of all, we have to get the value of \[\Delta \] and we know that \[\Delta \] is the determinant value of coefficients of x, y, and z.
Let us make a matrix and in that matrix, we have to put the values of coefficients of x in the \[{{1}^{st}}\] row, coefficient of y in the \[{{2}^{nd}}\] row, and coefficient of z in the \[{{3}^{rd}}\] row.
For the \[{{1}^{st}}\] , we have 2, 1, and -1 as the coefficients of x, y, and z.
For the \[{{2}^{nd}}\] , we have 1, 1, and -2 as the coefficients of x, y, and z.
For the \[{{3}^{rd}}\] , we have 3, 3, and -3 as the coefficients of x, y, and z.
Putting the value of coefficients of x, y, and z in the rows of the matrix, we get
\[\Delta =\left| \begin{align}
& \begin{matrix}
2 & 1 & -1 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 & -2 \\
\end{matrix} \\
& \begin{matrix}
3 & 2 & -3 \\
\end{matrix} \\
\end{align} \right|\] …………………….(4)
\[\begin{align}
& \Rightarrow \Delta =2\{1(-3)-2(-2)\}-1\left\{ 1(-3)-3(-2) \right\}+(-1)\{1(2)-1(3)\} \\
& \Rightarrow \Delta =2\left( -3+4 \right)-1\left( -3+6 \right)-1\left( 2-3 \right) \\
& \Rightarrow \Delta =2(1)-1(3)-1(-1) \\
& \Rightarrow \Delta =2-3+1 \\
\end{align}\]
\[\Rightarrow \Delta =0\] ………………….(5)
Now, we need to find the determinant value of \[{{\Delta }_{1}}\] . But for the determinant value, we need the matrix \[{{\Delta }_{1}}\] . Replace the \[{{1}^{st}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4.
On replacing we get,
\[{{\Delta }_{1}}=\left| \begin{align}
& \begin{matrix}
4 & 1 & -1 \\
\end{matrix} \\
& \begin{matrix}
0 & 1 & -2 \\
\end{matrix} \\
& \begin{matrix}
4 & 2 & -3 \\
\end{matrix} \\
\end{align} \right|\]
\[\begin{align}
& \Rightarrow {{\Delta }_{1}}=4\{1(-3)-2(-2)\}-1\left\{ 0(-3)-4(-2) \right\}+(-1)\{0(2)-1(4)\} \\
& \Rightarrow {{\Delta }_{1}}=4\left( -3+4 \right)-1\left( 0+8 \right)-1\left( 0-4 \right) \\
& \Rightarrow {{\Delta }_{1}}=4(1)-1(8)-1(-4) \\
& \Rightarrow {{\Delta }_{1}}=4-8+4 \\
\end{align}\]
\[\Rightarrow {{\Delta }_{1}}=0\]
Now, we need to find the determinant value of \[{{\Delta }_{2}}\] . But for the determinant value, we need the matrix \[{{\Delta }_{2}}\] . Replace the \[{{2}^{nd}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4.
\[{{\Delta }_{2}}=\left| \begin{align}
& \begin{matrix}
2 & 4 & -1 \\
\end{matrix} \\
& \begin{matrix}
1 & 0 & -2 \\
\end{matrix} \\
& \begin{matrix}
3 & 4 & -3 \\
\end{matrix} \\
\end{align} \right|\]
\[\begin{align}
& \Rightarrow {{\Delta }_{2}}=2\{0(-3)-4(-2)\}-4\left\{ 1(-3)-3(-2) \right\}+(-1)\{1(4)-0(3)\} \\
& \Rightarrow {{\Delta }_{2}}=2\left( 0+8 \right)-4\left( -3+6 \right)-1\left( 4-0 \right) \\
& \Rightarrow {{\Delta }_{2}}=2(8)-4(3)-1(4) \\
& \Rightarrow {{\Delta }_{2}}=16-12-4 \\
\end{align}\]
\[\Rightarrow {{\Delta }_{2}}=0\]
Now, we need to find the determinant value of \[{{\Delta }_{3}}\] . But for the determinant value, we need the matrix \[{{\Delta }_{3}}\] . Replace the \[{{3}^{rd}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4.
\[{{\Delta }_{3}}=\left| \begin{align}
& \begin{matrix}
2 & 1 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 & 0 \\
\end{matrix} \\
& \begin{matrix}
3 & 2 & 4 \\
\end{matrix} \\
\end{align} \right|\]
\[\begin{align}
& \Rightarrow {{\Delta }_{3}}=2\{1(4)-2(0)\}-1\left\{ 1(4)-3(0) \right\}+(4)\{1(2)-1(3)\} \\
& \Rightarrow {{\Delta }_{3}}=2\left( 4-0 \right)-1\left( 4-0 \right)+4\left( 2-3 \right) \\
& \Rightarrow {{\Delta }_{3}}=2(4)-1(4)+4(-1) \\
& \Rightarrow {{\Delta }_{3}}=8-4-4 \\
\end{align}\]
\[\Rightarrow {{\Delta }_{3}}=0\]
We know that,
\[x=\dfrac{{{\Delta }_{1}}}{\Delta }=\dfrac{0}{0}=Not\,defined\]
\[y=\dfrac{{{\Delta }_{2}}}{\Delta }=\dfrac{0}{0}=Not\,defined\]
\[z=\dfrac{{{\Delta }_{3}}}{\Delta }=\dfrac{0}{0}=Not\,defined\]
We don’t have any defined values of x, y, and z.
Hence, there is no solution of x, y, and z.
Note: In this question, one may do a calculation mistake in getting the determinant value of the matrix. Here, we are finding the determinant value of the matrices \[\Delta \] , \[{{\Delta }_{1}}\] , \[{{\Delta }_{2}}\] , and \[{{\Delta }_{3}}\] .
\[{{\Delta }_{1}}=\left| \begin{align}
& \begin{matrix}
4 & 1 & -1 \\
\end{matrix} \\
& \begin{matrix}
0 & 1 & -2 \\
\end{matrix} \\
& \begin{matrix}
4 & 2 & -3 \\
\end{matrix} \\
\end{align} \right|\]
While finding the determinant value of the matrix \[{{\Delta }_{1}}\] , one may miss the negative sign while expanding the matrix with respect to the \[{{2}^{nd}}\] row and write it as,
\[{{\Delta }_{1}}=4\{1(-3)-2(-2)\}+1\left\{ 0(-3)-4(-2) \right\}+(-1)\{0(2)-1(4)\}\] which is wrong. The correct way to expand the matrix is \[{{\Delta }_{1}}=4\{1(-3)-2(-2)\}-1\left\{ 0(-3)-4(-2) \right\}+(-1)\{0(2)-1(4)\}\] .
Complete step-by-step answer:
According to the question, we have three equations that are linear in terms of x, y, and z.
\[2x+y-z=4\] ………………………(1)
\[x+y-2z=0\] …………………..(2)
\[3x+2y-3z=4\] ……………………..(3)
First of all, we have to get the value of \[\Delta \] and we know that \[\Delta \] is the determinant value of coefficients of x, y, and z.
Let us make a matrix and in that matrix, we have to put the values of coefficients of x in the \[{{1}^{st}}\] row, coefficient of y in the \[{{2}^{nd}}\] row, and coefficient of z in the \[{{3}^{rd}}\] row.
For the \[{{1}^{st}}\] , we have 2, 1, and -1 as the coefficients of x, y, and z.
For the \[{{2}^{nd}}\] , we have 1, 1, and -2 as the coefficients of x, y, and z.
For the \[{{3}^{rd}}\] , we have 3, 3, and -3 as the coefficients of x, y, and z.
Putting the value of coefficients of x, y, and z in the rows of the matrix, we get
\[\Delta =\left| \begin{align}
& \begin{matrix}
2 & 1 & -1 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 & -2 \\
\end{matrix} \\
& \begin{matrix}
3 & 2 & -3 \\
\end{matrix} \\
\end{align} \right|\] …………………….(4)
\[\begin{align}
& \Rightarrow \Delta =2\{1(-3)-2(-2)\}-1\left\{ 1(-3)-3(-2) \right\}+(-1)\{1(2)-1(3)\} \\
& \Rightarrow \Delta =2\left( -3+4 \right)-1\left( -3+6 \right)-1\left( 2-3 \right) \\
& \Rightarrow \Delta =2(1)-1(3)-1(-1) \\
& \Rightarrow \Delta =2-3+1 \\
\end{align}\]
\[\Rightarrow \Delta =0\] ………………….(5)
Now, we need to find the determinant value of \[{{\Delta }_{1}}\] . But for the determinant value, we need the matrix \[{{\Delta }_{1}}\] . Replace the \[{{1}^{st}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4.
On replacing we get,
\[{{\Delta }_{1}}=\left| \begin{align}
& \begin{matrix}
4 & 1 & -1 \\
\end{matrix} \\
& \begin{matrix}
0 & 1 & -2 \\
\end{matrix} \\
& \begin{matrix}
4 & 2 & -3 \\
\end{matrix} \\
\end{align} \right|\]
\[\begin{align}
& \Rightarrow {{\Delta }_{1}}=4\{1(-3)-2(-2)\}-1\left\{ 0(-3)-4(-2) \right\}+(-1)\{0(2)-1(4)\} \\
& \Rightarrow {{\Delta }_{1}}=4\left( -3+4 \right)-1\left( 0+8 \right)-1\left( 0-4 \right) \\
& \Rightarrow {{\Delta }_{1}}=4(1)-1(8)-1(-4) \\
& \Rightarrow {{\Delta }_{1}}=4-8+4 \\
\end{align}\]
\[\Rightarrow {{\Delta }_{1}}=0\]
Now, we need to find the determinant value of \[{{\Delta }_{2}}\] . But for the determinant value, we need the matrix \[{{\Delta }_{2}}\] . Replace the \[{{2}^{nd}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4.
\[{{\Delta }_{2}}=\left| \begin{align}
& \begin{matrix}
2 & 4 & -1 \\
\end{matrix} \\
& \begin{matrix}
1 & 0 & -2 \\
\end{matrix} \\
& \begin{matrix}
3 & 4 & -3 \\
\end{matrix} \\
\end{align} \right|\]
\[\begin{align}
& \Rightarrow {{\Delta }_{2}}=2\{0(-3)-4(-2)\}-4\left\{ 1(-3)-3(-2) \right\}+(-1)\{1(4)-0(3)\} \\
& \Rightarrow {{\Delta }_{2}}=2\left( 0+8 \right)-4\left( -3+6 \right)-1\left( 4-0 \right) \\
& \Rightarrow {{\Delta }_{2}}=2(8)-4(3)-1(4) \\
& \Rightarrow {{\Delta }_{2}}=16-12-4 \\
\end{align}\]
\[\Rightarrow {{\Delta }_{2}}=0\]
Now, we need to find the determinant value of \[{{\Delta }_{3}}\] . But for the determinant value, we need the matrix \[{{\Delta }_{3}}\] . Replace the \[{{3}^{rd}}\] column of the matrix \[\Delta \] by the constant terms and the constant terms are 4, 0, and 4.
\[{{\Delta }_{3}}=\left| \begin{align}
& \begin{matrix}
2 & 1 & 4 \\
\end{matrix} \\
& \begin{matrix}
1 & 1 & 0 \\
\end{matrix} \\
& \begin{matrix}
3 & 2 & 4 \\
\end{matrix} \\
\end{align} \right|\]
\[\begin{align}
& \Rightarrow {{\Delta }_{3}}=2\{1(4)-2(0)\}-1\left\{ 1(4)-3(0) \right\}+(4)\{1(2)-1(3)\} \\
& \Rightarrow {{\Delta }_{3}}=2\left( 4-0 \right)-1\left( 4-0 \right)+4\left( 2-3 \right) \\
& \Rightarrow {{\Delta }_{3}}=2(4)-1(4)+4(-1) \\
& \Rightarrow {{\Delta }_{3}}=8-4-4 \\
\end{align}\]
\[\Rightarrow {{\Delta }_{3}}=0\]
We know that,
\[x=\dfrac{{{\Delta }_{1}}}{\Delta }=\dfrac{0}{0}=Not\,defined\]
\[y=\dfrac{{{\Delta }_{2}}}{\Delta }=\dfrac{0}{0}=Not\,defined\]
\[z=\dfrac{{{\Delta }_{3}}}{\Delta }=\dfrac{0}{0}=Not\,defined\]
We don’t have any defined values of x, y, and z.
Hence, there is no solution of x, y, and z.
Note: In this question, one may do a calculation mistake in getting the determinant value of the matrix. Here, we are finding the determinant value of the matrices \[\Delta \] , \[{{\Delta }_{1}}\] , \[{{\Delta }_{2}}\] , and \[{{\Delta }_{3}}\] .
\[{{\Delta }_{1}}=\left| \begin{align}
& \begin{matrix}
4 & 1 & -1 \\
\end{matrix} \\
& \begin{matrix}
0 & 1 & -2 \\
\end{matrix} \\
& \begin{matrix}
4 & 2 & -3 \\
\end{matrix} \\
\end{align} \right|\]
While finding the determinant value of the matrix \[{{\Delta }_{1}}\] , one may miss the negative sign while expanding the matrix with respect to the \[{{2}^{nd}}\] row and write it as,
\[{{\Delta }_{1}}=4\{1(-3)-2(-2)\}+1\left\{ 0(-3)-4(-2) \right\}+(-1)\{0(2)-1(4)\}\] which is wrong. The correct way to expand the matrix is \[{{\Delta }_{1}}=4\{1(-3)-2(-2)\}-1\left\{ 0(-3)-4(-2) \right\}+(-1)\{0(2)-1(4)\}\] .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

