
Solve the equation:
$\cos 3x.{\cos ^3}x + \sin 3x.{\sin ^3}x = 0$
$
(a){\text{ }}\left( {2n + 1} \right)\dfrac{\pi }{4},{\text{ n}} \in {\text{I}} \\
{\text{(b) }}\left( {2n + 1} \right)\dfrac{\pi }{2},{\text{ n}} \in {\text{I}} \\
{\text{(c) }}\left( {2n + 1} \right)\dfrac{\pi }{3},{\text{ n}} \in {\text{I}} \\
{\text{(d) }}\left( {2n + 1} \right)\dfrac{\pi }{6},{\text{ n}} \in {\text{I}} \\
$
Answer
598.5k+ views
Hint – In this question use the formula that $\cos 3x = 4{\cos ^3}x - 3\cos x,\sin 3x = 3\sin x - 4{\sin ^3}x$. On simplification and application of basic algebraic identity$\left[ {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right],\left[ {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right]$, will help manipulating the equation to the final result.
Complete step-by-step answer:
Given trigonometric equation is
$\cos 3x.{\cos ^3}x + \sin 3x.{\sin ^3}x = 0$
Now as we know that $\cos 3x = 4{\cos ^3}x - 3\cos x,\sin 3x = 3\sin x - 4{\sin ^3}x$ so use this property in above equation that is
$ \Rightarrow \left( {4{{\cos }^3}x - 3\cos x} \right).{\cos ^3}x + \left( {3\sin x - 4{{\sin }^3}x} \right).{\sin ^3}x = 0$
Now simplify this equation we have,
$ \Rightarrow 4{\cos ^6}x - 3{\cos ^4}x + 3{\sin ^4}x - 4{\sin ^6}x = 0$
$ \Rightarrow 4\left( {{{\cos }^6}x - {{\sin }^6}x} \right) - 3\left( {{{\cos }^4}x - {{\sin }^4}x} \right) = 0$
$ \Rightarrow 4\left[ {{{\left( {{{\cos }^2}x} \right)}^3} - {{\left( {{{\sin }^2}x} \right)}^3}} \right] - 3\left[ {{{\left( {{{\cos }^2}x} \right)}^2} - {{\left( {{{\sin }^2}x} \right)}^2}} \right] = 0$
Now use the property that $\left[ {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right],\left[ {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right]$ so we have,
$ \Rightarrow 4\left[ {\left( {{{\cos }^2}x} \right) - \left( {{{\sin }^2}x} \right)} \right]\left[ {{{\cos }^4}x + {{\sin }^4}x + {{\cos }^2}x{{\sin }^2}x} \right] - 3\left[ {\left( {{{\cos }^2}x} \right) - \left( {{{\sin }^2}x} \right)} \right]\left[ {{{\cos }^2}x + {{\sin }^2}x} \right] = 0$
Now as we know that ${\sin ^2}x + {\cos ^2}x = 1$ so we have,
$ \Rightarrow \left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left[ {4\left( {{{\cos }^4}x + {{\sin }^4}x + {{\cos }^2}x{{\sin }^2}x} \right) - 3} \right] = 0$
Now add and subtract by ${\cos ^2}x{\sin ^2}x$ in the term ${\cos ^4}x + {\sin ^4}x + {\cos ^2}x{\sin ^2}x$ we have
$ \Rightarrow \left( {\cos 2x} \right)\left[ {4\left( {{{\cos }^4}x + {{\sin }^4}x + 2{{\cos }^2}x{{\sin }^2}x - {{\cos }^2}x{{\sin }^2}x} \right) - 3} \right] = 0$, $\left[ {\because {{\cos }^2}x - {{\sin }^2}x = \cos 2x} \right]$
Now use the property ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ we have,
$ \Rightarrow \left( {\cos 2x} \right)\left[ {4{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^2} - 4{{\cos }^2}x{{\sin }^2}x - 3} \right] = 0$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {4 - 4{{\cos }^2}x{{\sin }^2}x - 3} \right] = 0$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {1 - {{\left( {2\cos x\sin x} \right)}^2}} \right] = 0$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {1 - {{\sin }^2}2x} \right] = 0$, $\left[ {\because \sin 2x = 2\sin x\cos x} \right]$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {{{\cos }^2}2x} \right] = 0$, $\left[ {\because 1 - {{\sin }^2}2x = {{\cos }^2}2x} \right]$
$ \Rightarrow {\cos ^3}2x = 0$
$ \Rightarrow \cos 2x = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right]$ Where, n = 0, 1, 2, 3...
Now on comparing we have,
$2x = \left( {2n + 1} \right)\dfrac{\pi }{2}$
$ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{4}$, $n \in I$
So this is the required solution.
Hence option (A) is the correct answer.
Note – It is always advisable to remember basic trigonometric identity like $\sin 2x = 2\sin x\cos x$, $1 - {\sin ^2}2x = {\cos ^2}2x$ and others like $\cos 2x = {\cos ^2}x - {\sin ^2}x$, $1 + {\tan ^2}x = {\sec ^2}x$ etc. helps solving problems of this kind. The verification of $\cos 4\theta = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right]$ can be provided by the fact that n in this case varies form n = 0, 1, 2... that is set of whole numbers. So if n=0, then we will have $\cos \dfrac{\pi }{2}$ which eventually will be zero. Now if we substitute 1 in place of n we get $\cos \dfrac{{3\pi }}{2}$ which is again zero. Thus $\cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right]$ is the general value for any $\cos \theta = 0$.
Complete step-by-step answer:
Given trigonometric equation is
$\cos 3x.{\cos ^3}x + \sin 3x.{\sin ^3}x = 0$
Now as we know that $\cos 3x = 4{\cos ^3}x - 3\cos x,\sin 3x = 3\sin x - 4{\sin ^3}x$ so use this property in above equation that is
$ \Rightarrow \left( {4{{\cos }^3}x - 3\cos x} \right).{\cos ^3}x + \left( {3\sin x - 4{{\sin }^3}x} \right).{\sin ^3}x = 0$
Now simplify this equation we have,
$ \Rightarrow 4{\cos ^6}x - 3{\cos ^4}x + 3{\sin ^4}x - 4{\sin ^6}x = 0$
$ \Rightarrow 4\left( {{{\cos }^6}x - {{\sin }^6}x} \right) - 3\left( {{{\cos }^4}x - {{\sin }^4}x} \right) = 0$
$ \Rightarrow 4\left[ {{{\left( {{{\cos }^2}x} \right)}^3} - {{\left( {{{\sin }^2}x} \right)}^3}} \right] - 3\left[ {{{\left( {{{\cos }^2}x} \right)}^2} - {{\left( {{{\sin }^2}x} \right)}^2}} \right] = 0$
Now use the property that $\left[ {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right],\left[ {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right]$ so we have,
$ \Rightarrow 4\left[ {\left( {{{\cos }^2}x} \right) - \left( {{{\sin }^2}x} \right)} \right]\left[ {{{\cos }^4}x + {{\sin }^4}x + {{\cos }^2}x{{\sin }^2}x} \right] - 3\left[ {\left( {{{\cos }^2}x} \right) - \left( {{{\sin }^2}x} \right)} \right]\left[ {{{\cos }^2}x + {{\sin }^2}x} \right] = 0$
Now as we know that ${\sin ^2}x + {\cos ^2}x = 1$ so we have,
$ \Rightarrow \left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left[ {4\left( {{{\cos }^4}x + {{\sin }^4}x + {{\cos }^2}x{{\sin }^2}x} \right) - 3} \right] = 0$
Now add and subtract by ${\cos ^2}x{\sin ^2}x$ in the term ${\cos ^4}x + {\sin ^4}x + {\cos ^2}x{\sin ^2}x$ we have
$ \Rightarrow \left( {\cos 2x} \right)\left[ {4\left( {{{\cos }^4}x + {{\sin }^4}x + 2{{\cos }^2}x{{\sin }^2}x - {{\cos }^2}x{{\sin }^2}x} \right) - 3} \right] = 0$, $\left[ {\because {{\cos }^2}x - {{\sin }^2}x = \cos 2x} \right]$
Now use the property ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ we have,
$ \Rightarrow \left( {\cos 2x} \right)\left[ {4{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^2} - 4{{\cos }^2}x{{\sin }^2}x - 3} \right] = 0$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {4 - 4{{\cos }^2}x{{\sin }^2}x - 3} \right] = 0$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {1 - {{\left( {2\cos x\sin x} \right)}^2}} \right] = 0$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {1 - {{\sin }^2}2x} \right] = 0$, $\left[ {\because \sin 2x = 2\sin x\cos x} \right]$
$ \Rightarrow \left( {\cos 2x} \right)\left[ {{{\cos }^2}2x} \right] = 0$, $\left[ {\because 1 - {{\sin }^2}2x = {{\cos }^2}2x} \right]$
$ \Rightarrow {\cos ^3}2x = 0$
$ \Rightarrow \cos 2x = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right]$ Where, n = 0, 1, 2, 3...
Now on comparing we have,
$2x = \left( {2n + 1} \right)\dfrac{\pi }{2}$
$ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{4}$, $n \in I$
So this is the required solution.
Hence option (A) is the correct answer.
Note – It is always advisable to remember basic trigonometric identity like $\sin 2x = 2\sin x\cos x$, $1 - {\sin ^2}2x = {\cos ^2}2x$ and others like $\cos 2x = {\cos ^2}x - {\sin ^2}x$, $1 + {\tan ^2}x = {\sec ^2}x$ etc. helps solving problems of this kind. The verification of $\cos 4\theta = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right]$ can be provided by the fact that n in this case varies form n = 0, 1, 2... that is set of whole numbers. So if n=0, then we will have $\cos \dfrac{\pi }{2}$ which eventually will be zero. Now if we substitute 1 in place of n we get $\cos \dfrac{{3\pi }}{2}$ which is again zero. Thus $\cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right]$ is the general value for any $\cos \theta = 0$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

