
Solve for x:
\[3x-\dfrac{{x - 2}}{3} = 4-\dfrac{{x{\text{ }}-{\text{ }}1}}{4}{\text{ }}\]
Answer
516.9k+ views
Hint: Linear equation of one variable contains one variable and constants. Variables are kept on one side and then simplified in order to solve the question. It should be done step by step to avoid mistakes. In an equation we could add, subtract, multiply or divide the same value on both sides, it does not change the value or result of the equation.
Complete step-by-step answer:
We are given a linear equation in one variable and we have to find the value of x.
The given equation is:
\[3x-\dfrac{{x - 2}}{3} = 4-\dfrac{{x{\text{ }}-{\text{ }}1}}{4}{\text{ }}\]
Taking LCM both sides we get,
\[ \Rightarrow \dfrac{{3 \times 3x-\left( {x - 2} \right)}}{3} = \dfrac{{4 \times 4-\left( {x-1} \right){\text{ }}}}{4}\]
Simplifying Numerator both sides
\[ \Rightarrow \dfrac{{9x-\left( {x - 2} \right)}}{3} = \dfrac{{16-\left( {x{\text{ }}-1} \right)}}{4}\]
Again opening bracket and simplifying (as sign of numbers under bracket will change in case of subtraction)
\[ \Rightarrow \dfrac{{9x-x + 2}}{3} = \dfrac{{16-x + 1}}{4}\]
\[ \Rightarrow \dfrac{{8x + 2}}{3} = \dfrac{{17-x}}{4}\]
For further we have to cross multiply to get the equation in one line and so we get,
\[ \Rightarrow \left( {8x + 2} \right) \times 4{\text{ }} = {\text{ }}\left( {17 - x} \right) \times 3\]
Multiplying on opening the bracket we get,
\[ \Rightarrow 32x + 8{\text{ }} = {\text{ 51}} - 3x\]
Now we have to keep variable in one side and constant in other side, we do it by changing the sign of the variable or constant whose side we are going to change
So,
\[ \Rightarrow 32x + 3x{\text{ }} = {\text{ 51}} - 8\]
Simplifying this we get
\[ \Rightarrow 35x{\text{ }} = {\text{ 43}}\]
Now dividing 35 both sides of the equation to get the value of \[x\]
\[ \Rightarrow x = \dfrac{{{\text{43}}}}{{35}}\]
Hence the value of \[x\] is \[\dfrac{{43}}{{35}}\]
So, the correct answer is “ \[\dfrac{{43}}{{35}}\]”.
Note: BODMAS rule is must for any arithmetic operation. The number of equations needed to solve must be equal to the number of variables to be obtained. Here it is a linear equation in one variable so one equation is sufficient to solve the given equation. Similarly two equations are needed to solve linear equations containing two variables.
Complete step-by-step answer:
We are given a linear equation in one variable and we have to find the value of x.
The given equation is:
\[3x-\dfrac{{x - 2}}{3} = 4-\dfrac{{x{\text{ }}-{\text{ }}1}}{4}{\text{ }}\]
Taking LCM both sides we get,
\[ \Rightarrow \dfrac{{3 \times 3x-\left( {x - 2} \right)}}{3} = \dfrac{{4 \times 4-\left( {x-1} \right){\text{ }}}}{4}\]
Simplifying Numerator both sides
\[ \Rightarrow \dfrac{{9x-\left( {x - 2} \right)}}{3} = \dfrac{{16-\left( {x{\text{ }}-1} \right)}}{4}\]
Again opening bracket and simplifying (as sign of numbers under bracket will change in case of subtraction)
\[ \Rightarrow \dfrac{{9x-x + 2}}{3} = \dfrac{{16-x + 1}}{4}\]
\[ \Rightarrow \dfrac{{8x + 2}}{3} = \dfrac{{17-x}}{4}\]
For further we have to cross multiply to get the equation in one line and so we get,
\[ \Rightarrow \left( {8x + 2} \right) \times 4{\text{ }} = {\text{ }}\left( {17 - x} \right) \times 3\]
Multiplying on opening the bracket we get,
\[ \Rightarrow 32x + 8{\text{ }} = {\text{ 51}} - 3x\]
Now we have to keep variable in one side and constant in other side, we do it by changing the sign of the variable or constant whose side we are going to change
So,
\[ \Rightarrow 32x + 3x{\text{ }} = {\text{ 51}} - 8\]
Simplifying this we get
\[ \Rightarrow 35x{\text{ }} = {\text{ 43}}\]
Now dividing 35 both sides of the equation to get the value of \[x\]
\[ \Rightarrow x = \dfrac{{{\text{43}}}}{{35}}\]
Hence the value of \[x\] is \[\dfrac{{43}}{{35}}\]
So, the correct answer is “ \[\dfrac{{43}}{{35}}\]”.
Note: BODMAS rule is must for any arithmetic operation. The number of equations needed to solve must be equal to the number of variables to be obtained. Here it is a linear equation in one variable so one equation is sufficient to solve the given equation. Similarly two equations are needed to solve linear equations containing two variables.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


