
Six years hence a man’s age will be three times the age of his son and three years ago, he was nine times as old as his son. Find their present ages.
Answer
612.9k+ views
Hint- Here we will proceed by assuming the present age of man and present age of son be x, y. Then we will convert conditions into linear equations and solve the linear equations to get the required answer.
Complete step-by-step solution-
Let the present age of man is $x$
And the present age of his son is $y$.
According to the question,
Case 1-
After 6 years:
$(x + 6) = 3(y + 6)$
$\Rightarrow x + 6 = 3y + 18 $
$\Rightarrow x + 6 – 3y – 18 = 0$
$\Rightarrow x – 12 = 3y $
$\Rightarrow x – 3y = 12 $ ………………. (1)
Case 2-
Three years ago:
$ x -3 = 9(y – 3) $
$\Rightarrow x – 3 = 9y – 27 $
$\Rightarrow x – 9y = -24 $ ……………. (2)
Now subtracting equation 2 from equation 1,
$(x – 3y = 12)$ - $ (x – 9y = -24)$
We get-
$\Rightarrow 6y = 36$
$\Rightarrow y = 6$
Substituting the value of y in equation 1,
$ x – 3xy = 12 $
We get-
$\Rightarrow x – 3x (6) = 12$
$\Rightarrow x = 12 + 18$
$\Rightarrow x = 30 $
Therefore, the age of man is 30 years.
Age of the son is 6 years.
Note- While solving this question, we can assume any variables instead of x and y. Also we can solve the linear equations by any method like substitution method, elimination method or cross-multiplication method.
Complete step-by-step solution-
Let the present age of man is $x$
And the present age of his son is $y$.
According to the question,
Case 1-
After 6 years:
$(x + 6) = 3(y + 6)$
$\Rightarrow x + 6 = 3y + 18 $
$\Rightarrow x + 6 – 3y – 18 = 0$
$\Rightarrow x – 12 = 3y $
$\Rightarrow x – 3y = 12 $ ………………. (1)
Case 2-
Three years ago:
$ x -3 = 9(y – 3) $
$\Rightarrow x – 3 = 9y – 27 $
$\Rightarrow x – 9y = -24 $ ……………. (2)
Now subtracting equation 2 from equation 1,
$(x – 3y = 12)$ - $ (x – 9y = -24)$
We get-
$\Rightarrow 6y = 36$
$\Rightarrow y = 6$
Substituting the value of y in equation 1,
$ x – 3xy = 12 $
We get-
$\Rightarrow x – 3x (6) = 12$
$\Rightarrow x = 12 + 18$
$\Rightarrow x = 30 $
Therefore, the age of man is 30 years.
Age of the son is 6 years.
Note- While solving this question, we can assume any variables instead of x and y. Also we can solve the linear equations by any method like substitution method, elimination method or cross-multiplication method.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

