
Simplify the given Expression : $\dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}$.
Answer
592.8k+ views
Hint:The given problem is related to simplification by factorization. Express each term as a product of its factors and then simplify the expression.
Complete step-by-step answer:
We will proceed with the solution by taking each term, factoring it, and then substituting the factored form in the given expression. Then we will simplify the given expression.
The given expression is $\dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}$. The first term of the expression is ${{a}^{2}}+10a+21$. It is a quadratic in $a$ . We will use middle term splitting to factorize the quadratic. We have to split $10a$ into two terms, such as their sum is equal to $10a$ and their product is equal to $21{{a}^{2}}$ .
We can write $10a$ as $7a+3a$ . Here, the sum of $7a$ and $3a$ is $10a$ and the product of $7a$ and $3a$ is $21{{a}^{2}}$ . So, ${{a}^{2}}+10a+21$can be written as ${{a}^{2}}+7a+3a+21$ .
$\Rightarrow {{a}^{2}}+10a+21=a\left( a+7 \right)+3\left( a+7 \right)$
$\Rightarrow {{a}^{2}}+10a+21=\left( a+3 \right)\left( a+7 \right)$
So, we can write ${{a}^{2}}+10a+21$ as $\left( a+3 \right)\left( a+7 \right)$ .
Now, the second term is ${{a}^{2}}+6a-7$ . It is a quadratic in $a$ . We will use middle term splitting to factorize the quadratic. We have to split $6a$ into two terms, such as their sum is equal to $6a$ and their product is equal to \[-7{{a}^{2}}\] .
We can write $6a$ as $7a-a$ . Here, the sum of $7a$ and $-a$ is $6a$ and the product of $7a$ and $-a$ is $-7{{a}^{2}}$ . So, ${{a}^{2}}+6a-7$can be written as ${{a}^{2}}+7a-a-7$ .
$\Rightarrow {{a}^{2}}+6a-7=a\left( a+7 \right)-1\left( a+7 \right)$
$\Rightarrow {{a}^{2}}+6a-7=\left( a-1 \right)\left( a+7 \right)$
So, we can write ${{a}^{2}}+6a-7$ as $\left( a-1 \right)\left( a+7 \right)$ .
Now, the third term is ${{a}^{2}}-1$ . We know, we can write ${{a}^{2}}-1$ as ${{a}^{2}}-{{1}^{2}}$. So, ${{a}^{2}}-1={{a}^{2}}-{{1}^{2}}=\left( a+1 \right)\left( a-1 \right)$ . So, we can write ${{a}^{2}}-1$ as $\left( a+1 \right)\left( a-1 \right)$
Now, the fourth term is $\left( a+3 \right)$ . It is already in its simplest form. So, we don’t need to factorize it.
Now, the expression $\dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}$ can be written as $\dfrac{\left( a+7 \right)\left( a+3 \right)}{\left( a+7 \right)\left( a-1 \right)}\times \dfrac{\left( a-1 \right)\left( a+1 \right)}{\left( a+3 \right)}$ .
$\Rightarrow \dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}=a+1$
Hence, the simplified value of $\dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}$ is $a+1$ .
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Complete step-by-step answer:
We will proceed with the solution by taking each term, factoring it, and then substituting the factored form in the given expression. Then we will simplify the given expression.
The given expression is $\dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}$. The first term of the expression is ${{a}^{2}}+10a+21$. It is a quadratic in $a$ . We will use middle term splitting to factorize the quadratic. We have to split $10a$ into two terms, such as their sum is equal to $10a$ and their product is equal to $21{{a}^{2}}$ .
We can write $10a$ as $7a+3a$ . Here, the sum of $7a$ and $3a$ is $10a$ and the product of $7a$ and $3a$ is $21{{a}^{2}}$ . So, ${{a}^{2}}+10a+21$can be written as ${{a}^{2}}+7a+3a+21$ .
$\Rightarrow {{a}^{2}}+10a+21=a\left( a+7 \right)+3\left( a+7 \right)$
$\Rightarrow {{a}^{2}}+10a+21=\left( a+3 \right)\left( a+7 \right)$
So, we can write ${{a}^{2}}+10a+21$ as $\left( a+3 \right)\left( a+7 \right)$ .
Now, the second term is ${{a}^{2}}+6a-7$ . It is a quadratic in $a$ . We will use middle term splitting to factorize the quadratic. We have to split $6a$ into two terms, such as their sum is equal to $6a$ and their product is equal to \[-7{{a}^{2}}\] .
We can write $6a$ as $7a-a$ . Here, the sum of $7a$ and $-a$ is $6a$ and the product of $7a$ and $-a$ is $-7{{a}^{2}}$ . So, ${{a}^{2}}+6a-7$can be written as ${{a}^{2}}+7a-a-7$ .
$\Rightarrow {{a}^{2}}+6a-7=a\left( a+7 \right)-1\left( a+7 \right)$
$\Rightarrow {{a}^{2}}+6a-7=\left( a-1 \right)\left( a+7 \right)$
So, we can write ${{a}^{2}}+6a-7$ as $\left( a-1 \right)\left( a+7 \right)$ .
Now, the third term is ${{a}^{2}}-1$ . We know, we can write ${{a}^{2}}-1$ as ${{a}^{2}}-{{1}^{2}}$. So, ${{a}^{2}}-1={{a}^{2}}-{{1}^{2}}=\left( a+1 \right)\left( a-1 \right)$ . So, we can write ${{a}^{2}}-1$ as $\left( a+1 \right)\left( a-1 \right)$
Now, the fourth term is $\left( a+3 \right)$ . It is already in its simplest form. So, we don’t need to factorize it.
Now, the expression $\dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}$ can be written as $\dfrac{\left( a+7 \right)\left( a+3 \right)}{\left( a+7 \right)\left( a-1 \right)}\times \dfrac{\left( a-1 \right)\left( a+1 \right)}{\left( a+3 \right)}$ .
$\Rightarrow \dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}=a+1$
Hence, the simplified value of $\dfrac{{{a}^{2}}+10a+21}{{{a}^{2}}+6a-7}\times \dfrac{{{a}^{2}}-1}{a+3}$ is $a+1$ .
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

