
How do you simplify \[\log \left( {\dfrac{1}{{{{10}^x}}}} \right)\]?
Answer
518.7k+ views
Hint: Here the given question is to simplify for the “log” function, here we know that to simplify this function we need to use standard properties and formula of the “log” function. We know that fraction given in log splits in subtraction and power in the log function comes out as the coefficient of the log function.
Formulae Used: Common log properties is given as:
\[ \Rightarrow \log \left( {\dfrac{a}{b}} \right) = \log (a) - \log (b) \\
\Rightarrow \log ({x^a}) = a[\log (x)] \\
\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Complete step-by-step solution:
Using the standard formulae for log function here in the given question we need to simplify the given term, here first we need to break the fraction into subtraction by using the log property and then by putting the values of the function we can reach toward the simplified answer, on solving here we get:
\[ \Rightarrow \log \left( {\dfrac{1}{{{{10}^x}}}} \right) = \log (1) - \log ({10^x}) = 0 - x\log (10) = - x\]
Here we know:
\[\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Here we get the simplified value for the given term in the form of log function.
Note: Log function is also a standard function in mathematics like other functions, here to solve for the log function we need to know the associated formulae and the procedure to solve for the value for the function given in the question.
Formulae Used: Common log properties is given as:
\[ \Rightarrow \log \left( {\dfrac{a}{b}} \right) = \log (a) - \log (b) \\
\Rightarrow \log ({x^a}) = a[\log (x)] \\
\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Complete step-by-step solution:
Using the standard formulae for log function here in the given question we need to simplify the given term, here first we need to break the fraction into subtraction by using the log property and then by putting the values of the function we can reach toward the simplified answer, on solving here we get:
\[ \Rightarrow \log \left( {\dfrac{1}{{{{10}^x}}}} \right) = \log (1) - \log ({10^x}) = 0 - x\log (10) = - x\]
Here we know:
\[\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Here we get the simplified value for the given term in the form of log function.
Note: Log function is also a standard function in mathematics like other functions, here to solve for the log function we need to know the associated formulae and the procedure to solve for the value for the function given in the question.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

