Answer
Verified
381.6k+ views
Hint: Here the given question is to simplify for the “log” function, here we know that to simplify this function we need to use standard properties and formula of the “log” function. We know that fraction given in log splits in subtraction and power in the log function comes out as the coefficient of the log function.
Formulae Used: Common log properties is given as:
\[ \Rightarrow \log \left( {\dfrac{a}{b}} \right) = \log (a) - \log (b) \\
\Rightarrow \log ({x^a}) = a[\log (x)] \\
\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Complete step-by-step solution:
Using the standard formulae for log function here in the given question we need to simplify the given term, here first we need to break the fraction into subtraction by using the log property and then by putting the values of the function we can reach toward the simplified answer, on solving here we get:
\[ \Rightarrow \log \left( {\dfrac{1}{{{{10}^x}}}} \right) = \log (1) - \log ({10^x}) = 0 - x\log (10) = - x\]
Here we know:
\[\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Here we get the simplified value for the given term in the form of log function.
Note: Log function is also a standard function in mathematics like other functions, here to solve for the log function we need to know the associated formulae and the procedure to solve for the value for the function given in the question.
Formulae Used: Common log properties is given as:
\[ \Rightarrow \log \left( {\dfrac{a}{b}} \right) = \log (a) - \log (b) \\
\Rightarrow \log ({x^a}) = a[\log (x)] \\
\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Complete step-by-step solution:
Using the standard formulae for log function here in the given question we need to simplify the given term, here first we need to break the fraction into subtraction by using the log property and then by putting the values of the function we can reach toward the simplified answer, on solving here we get:
\[ \Rightarrow \log \left( {\dfrac{1}{{{{10}^x}}}} \right) = \log (1) - \log ({10^x}) = 0 - x\log (10) = - x\]
Here we know:
\[\Rightarrow \log 1 = 0 \\
\Rightarrow \log 10 = 1 \]
Here we get the simplified value for the given term in the form of log function.
Note: Log function is also a standard function in mathematics like other functions, here to solve for the log function we need to know the associated formulae and the procedure to solve for the value for the function given in the question.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Draw a labelled sketch of the human eye class 12 physics CBSE