
Simplify
(i) \[({x^2} - 5)(x + 5) + 25\]
(ii) $({a^2} + 5)({b^2} + 3) + 5$
(iii) \[(t + {8^2})({t^2} - s)\]
(iv) \[(a + b)(c - d) + (a - b)(c + d) + 2(ac + bd)\]
(v) \[(x + y)(2x + y) + (x + 2y)(x - y)\]
(vi) \[(x + y)({x^2} - xy + {y^2})\]
(vii) \[(1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y\]
(viii) \[(a + b + c)(a + b - c)\]
Answer
577.5k+ views
Hint: Multiply each term of the first bracket with each term of the second bracket to get a polynomial. Combine the like terms if there are any and simplify the polynomial.
Complete step by step solution:
We are given 8 expressions.
We need to simplify these expressions
(i) Given binomials \[({x^2} - 5)\] and \[(x + 5)\]in the expression \[({x^2} - 5)(x + 5) + 25\].
Consider the product \[({x^2} - 5)(x + 5)\]. We will add 25 to the product later.
We will first multiply each term of the binomial \[({x^2} - 5)\]with each term of the binomial\[(x + 5)\].
Thus, we have \[({x^2} - 5)(x + 5) = {x^2} \times (x + 5) - 5(x + 5)\]
Here we will multiply the term outside a bracket with each of the terms inside that bracket to obtain a polynomial with 4 terms and then we add 25 to it.
This gives us\[({x^2} - 5)(x + 5) = ({x^2} \times x + {x^2} \times 5) - (5 \times x + 5 \times 5) = ({x^3} + 5{x^2}) - (5x + 25)\]
Now\[({x^2} - 5)(x + 5) + 25 = ({x^3} + 5{x^2}) - (5x + 25) + 25\]
Now we will combine the like terms (the underlined part) to simplify the equation and get the final answer.
\[({x^2} - 5)(x + 5) + 25 = {x^3} + 5{x^2} - 5x\underline { - 25 + 25} = {x^3} + 5{x^2} - 5x + 0 = {x^3} + 5{x^2} - 5x\]
Hence the simplified expression is \[{x^3} + 5{x^2} - 5x\].
We will be repeating the above method for the next 7 expressions.
(ii) Consider the expression $({a^2} + 5)({b^2} + 3) + 5$
$
({a^2} + 5)({b^2} + 3) + 5 = {a^2}({b^2} + 3) + 5({b^2} + 3) + 5 \\
= ({a^2} \times {b^2} + {a^2} \times 3) + (5 \times {b^2} + 5 \times 3) + 5 \\
= ({a^2}{b^2} + 3{a^2}) + (5{b^2} + 15) + 5 \\
= {a^2}{b^2} + 3{a^2} + 5b\underline { + 15 + 5} \\
= {a^2}{b^2} + 3{a^2} + 5b + 20 \\
$
Hence the simplified expression is ${a^2}{b^2} + 3{a^2} + 5b + 20$.
(iii) Consider the expression \[(t + {8^2})({t^2} - s)\]
\[
(t + {8^2})({t^2} - s) = t({t^2} - s) + {8^2}({t^2} - s) \\
= (t \times {t^2} - t \times s) + ({8^2} \times {t^2} - {8^2} \times s) \\
= ({t^3} - st) + (64{t^2} - 64s) \\
= {t^3} - st + 64{t^2} - 64s \\
\]
Hence the simplified expression is \[{t^3} - st + 64{t^2} - 64s\].
(iv) Consider the expression \[(a + b)(c - d) + (a - b)(c + d) + 2(ac + bd)\]
\[
(a + b)(c - d) + (a - b)(c + d) + 2(ac + bd) \\
= [a(c - d) + b(c - d)] + [a(c + d) - b(c + d)] + (2 \times ac + 2 \times bd) \\
= (a \times c - a \times d) + (b \times c - b \times d) + (a \times c + a \times d) - (b \times c + b \times d) + (2 \times ac + 2 \times bd) \\
= (ac - ad) + (bc - bd) + (ac + ad) - (bc + bd) + (2ac + 2bd) \\
= ac - ad + bc - bd + ac + ad - bc - bd + 2ac + 2bd \\
= \underline {ac + ac + 2ac} - ad + ad + bc - bc - bd - bd + 2bd \\
= 3ac\underline { - ad + ad} + bc - bc - bd - bd + 2bd \\
= 3ac\underline { + bc - bc} - bd - bd + 2bd \\
= 3ac\underline { - bd - bd + 2bd} \\
= 3ac \\
\]
As like terms with different signs cancel out each other, we are left with\[3ac\].
Hence the simplified expression is\[3ac\].
(v) Consider the expression \[(x + y)(2x + y) + (x + 2y)(x - y)\]
(vi) Consider the expression \[(x + y)({x^2} - xy + {y^2})\]
\[
(x + y)({x^2} - xy + {y^2}) = x({x^2} - xy + {y^2}) + y({x^2} - xy + {y^2}) \\
= (x \times {x^2} - x \times xy + x \times {y^2}) + (y \times {x^2} - y \times xy + y \times {y^2}) \\
= ({x^3} - {x^2}y + x{y^2}) + ({x^2}y - x{y^2} + {y^3}) \\
= {x^3} - {x^2}y + x{y^2} + {x^2}y - x{y^2} + {y^3} \\
= {x^3}\underline { - {x^2}y + {x^2}y} + \underline {x{y^2} - x{y^2}} + {y^3} \\
= {x^3} + {y^3} \\
\]
Hence the simplified expression is \[{x^3} + {y^3}\].
(vii) Consider the expression \[(1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y\]
\[
(1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y \\
= 1.5x(1.5x + 4y + 3) - 4y(1.5x + 4y + 3) - 4.5x + 12y \\
= (1.5x \times 1.5x + 1.5x \times 4y + 1.5x \times 3) - (4y \times 1.5x + 4y \times 4y + 4y \times 3) - 4.5x + 12y \\
= (2.25{x^2} + 6xy + 4.5x) - (6xy + 16{y^2} + 12y) - 4.5x + 12y \\
= 2.25{x^2} + 6xy + 4.5x - 6xy - 16{y^2} - 12y - 4.5x + 12y \\
= 2.25{x^2} + \underline {6xy - 6xy} + \underline {4.5x - 4.5x} - 16{y^2}\underline { - 12y + 12y} \\
= 2.25{x^2} - 16{y^2} \\
\]
Hence the simplified expression is \[2.25{x^2} - 16{y^2}\].
(viii) Consider the expression \[(a + b + c)(a + b - c)\]
\[
(a + b + c)(a + b - c) = a(a + b - c) + b(a + b - c) + c(a + b - c) \\
= (a \times a + a \times b - a \times c) + (b \times a + b \times b - b \times c) + (c \times a + c \times b - c \times c) \\
= \,({a^2} + ab - ac) + (ab + {b^2} - bc) + (ca + bc - {c^2}) \\
= {a^2} + ab - ac + ab + {b^2} - bc + ca + bc - {c^2} \\
= {a^2} + \underline {ab + ab} - \underline {ac + ca} + {b^2}\underline { - bc + bc} - {c^2} \\
= {a^2} + 2ab + {b^2} - {c^2} \\
\]
Hence the simplified expression is \[{a^2} + 2ab + {b^2} - {c^2}\].
Note: If there is a minus sign outside the bracket, then while opening the bracket, the signs of the terms inside the bracket change.
For example, \[(25 + 6x) - (16x + 20{x^2}) = 25 + 6x - 16x - 20{x^2}\]
Complete step by step solution:
We are given 8 expressions.
We need to simplify these expressions
(i) Given binomials \[({x^2} - 5)\] and \[(x + 5)\]in the expression \[({x^2} - 5)(x + 5) + 25\].
Consider the product \[({x^2} - 5)(x + 5)\]. We will add 25 to the product later.
We will first multiply each term of the binomial \[({x^2} - 5)\]with each term of the binomial\[(x + 5)\].
Thus, we have \[({x^2} - 5)(x + 5) = {x^2} \times (x + 5) - 5(x + 5)\]
Here we will multiply the term outside a bracket with each of the terms inside that bracket to obtain a polynomial with 4 terms and then we add 25 to it.
This gives us\[({x^2} - 5)(x + 5) = ({x^2} \times x + {x^2} \times 5) - (5 \times x + 5 \times 5) = ({x^3} + 5{x^2}) - (5x + 25)\]
Now\[({x^2} - 5)(x + 5) + 25 = ({x^3} + 5{x^2}) - (5x + 25) + 25\]
Now we will combine the like terms (the underlined part) to simplify the equation and get the final answer.
\[({x^2} - 5)(x + 5) + 25 = {x^3} + 5{x^2} - 5x\underline { - 25 + 25} = {x^3} + 5{x^2} - 5x + 0 = {x^3} + 5{x^2} - 5x\]
Hence the simplified expression is \[{x^3} + 5{x^2} - 5x\].
We will be repeating the above method for the next 7 expressions.
(ii) Consider the expression $({a^2} + 5)({b^2} + 3) + 5$
$
({a^2} + 5)({b^2} + 3) + 5 = {a^2}({b^2} + 3) + 5({b^2} + 3) + 5 \\
= ({a^2} \times {b^2} + {a^2} \times 3) + (5 \times {b^2} + 5 \times 3) + 5 \\
= ({a^2}{b^2} + 3{a^2}) + (5{b^2} + 15) + 5 \\
= {a^2}{b^2} + 3{a^2} + 5b\underline { + 15 + 5} \\
= {a^2}{b^2} + 3{a^2} + 5b + 20 \\
$
Hence the simplified expression is ${a^2}{b^2} + 3{a^2} + 5b + 20$.
(iii) Consider the expression \[(t + {8^2})({t^2} - s)\]
\[
(t + {8^2})({t^2} - s) = t({t^2} - s) + {8^2}({t^2} - s) \\
= (t \times {t^2} - t \times s) + ({8^2} \times {t^2} - {8^2} \times s) \\
= ({t^3} - st) + (64{t^2} - 64s) \\
= {t^3} - st + 64{t^2} - 64s \\
\]
Hence the simplified expression is \[{t^3} - st + 64{t^2} - 64s\].
(iv) Consider the expression \[(a + b)(c - d) + (a - b)(c + d) + 2(ac + bd)\]
\[
(a + b)(c - d) + (a - b)(c + d) + 2(ac + bd) \\
= [a(c - d) + b(c - d)] + [a(c + d) - b(c + d)] + (2 \times ac + 2 \times bd) \\
= (a \times c - a \times d) + (b \times c - b \times d) + (a \times c + a \times d) - (b \times c + b \times d) + (2 \times ac + 2 \times bd) \\
= (ac - ad) + (bc - bd) + (ac + ad) - (bc + bd) + (2ac + 2bd) \\
= ac - ad + bc - bd + ac + ad - bc - bd + 2ac + 2bd \\
= \underline {ac + ac + 2ac} - ad + ad + bc - bc - bd - bd + 2bd \\
= 3ac\underline { - ad + ad} + bc - bc - bd - bd + 2bd \\
= 3ac\underline { + bc - bc} - bd - bd + 2bd \\
= 3ac\underline { - bd - bd + 2bd} \\
= 3ac \\
\]
As like terms with different signs cancel out each other, we are left with\[3ac\].
Hence the simplified expression is\[3ac\].
(v) Consider the expression \[(x + y)(2x + y) + (x + 2y)(x - y)\]
(vi) Consider the expression \[(x + y)({x^2} - xy + {y^2})\]
\[
(x + y)({x^2} - xy + {y^2}) = x({x^2} - xy + {y^2}) + y({x^2} - xy + {y^2}) \\
= (x \times {x^2} - x \times xy + x \times {y^2}) + (y \times {x^2} - y \times xy + y \times {y^2}) \\
= ({x^3} - {x^2}y + x{y^2}) + ({x^2}y - x{y^2} + {y^3}) \\
= {x^3} - {x^2}y + x{y^2} + {x^2}y - x{y^2} + {y^3} \\
= {x^3}\underline { - {x^2}y + {x^2}y} + \underline {x{y^2} - x{y^2}} + {y^3} \\
= {x^3} + {y^3} \\
\]
Hence the simplified expression is \[{x^3} + {y^3}\].
(vii) Consider the expression \[(1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y\]
\[
(1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y \\
= 1.5x(1.5x + 4y + 3) - 4y(1.5x + 4y + 3) - 4.5x + 12y \\
= (1.5x \times 1.5x + 1.5x \times 4y + 1.5x \times 3) - (4y \times 1.5x + 4y \times 4y + 4y \times 3) - 4.5x + 12y \\
= (2.25{x^2} + 6xy + 4.5x) - (6xy + 16{y^2} + 12y) - 4.5x + 12y \\
= 2.25{x^2} + 6xy + 4.5x - 6xy - 16{y^2} - 12y - 4.5x + 12y \\
= 2.25{x^2} + \underline {6xy - 6xy} + \underline {4.5x - 4.5x} - 16{y^2}\underline { - 12y + 12y} \\
= 2.25{x^2} - 16{y^2} \\
\]
Hence the simplified expression is \[2.25{x^2} - 16{y^2}\].
(viii) Consider the expression \[(a + b + c)(a + b - c)\]
\[
(a + b + c)(a + b - c) = a(a + b - c) + b(a + b - c) + c(a + b - c) \\
= (a \times a + a \times b - a \times c) + (b \times a + b \times b - b \times c) + (c \times a + c \times b - c \times c) \\
= \,({a^2} + ab - ac) + (ab + {b^2} - bc) + (ca + bc - {c^2}) \\
= {a^2} + ab - ac + ab + {b^2} - bc + ca + bc - {c^2} \\
= {a^2} + \underline {ab + ab} - \underline {ac + ca} + {b^2}\underline { - bc + bc} - {c^2} \\
= {a^2} + 2ab + {b^2} - {c^2} \\
\]
Hence the simplified expression is \[{a^2} + 2ab + {b^2} - {c^2}\].
Note: If there is a minus sign outside the bracket, then while opening the bracket, the signs of the terms inside the bracket change.
For example, \[(25 + 6x) - (16x + 20{x^2}) = 25 + 6x - 16x - 20{x^2}\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

