Answer
Verified
389.1k+ views
Hint: Here we have three different trigonometric functions. We will use the ratios of these functions. We will write the functions in the form of sin functions. That is cosecx and cotx has sin function in the denominator. So we will express them in sine function. And then we will solve it.
Complete step by step solution:
Given that,
\[\dfrac{{1 + \cos ecx}}{{\cos x + \cot x}}\]
Now we will write cosecx and cotx in sin function form.
\[ = \dfrac{{1 + \dfrac{1}{{\sin x}}}}{{\cos x + \dfrac{{\cos x}}{{\sin x}}}}\]
Taking the LCM in both numerator and denominator,
\[ = \dfrac{{\dfrac{{\sin x + 1}}{{\sin x}}}}{{\dfrac{{\cos x.\sin x + \cos x}}{{\sin x}}}}\]
Now cancelling the sin term,
\[ = \dfrac{{\sin x + 1}}{{\cos x.\sin x + \cos x}}\]
Taking cosx common from the denominator,
\[ = \dfrac{{\sin x + 1}}{{\cos x\left( {\sin x + 1} \right)}}\]
Cancelling the common term,
\[ = \dfrac{1}{{\cos x}}\]
We know that reciprocal of cosx is secx,
\[ = \sec x\]
Thus the answer is \[\dfrac{{1 + \cos ecx}}{{\cos x + \cot x}} = \sec x\]
So, the correct answer is “\[ \sec x\] ”.
Note: Note that, in these types of problems we use the trigonometric functions and their identities as per the need of the problem. Always try to write the equations in such a way that they can be simplified in an easy way. Like in the problem above we have taken help of sin function.
Complete step by step solution:
Given that,
\[\dfrac{{1 + \cos ecx}}{{\cos x + \cot x}}\]
Now we will write cosecx and cotx in sin function form.
\[ = \dfrac{{1 + \dfrac{1}{{\sin x}}}}{{\cos x + \dfrac{{\cos x}}{{\sin x}}}}\]
Taking the LCM in both numerator and denominator,
\[ = \dfrac{{\dfrac{{\sin x + 1}}{{\sin x}}}}{{\dfrac{{\cos x.\sin x + \cos x}}{{\sin x}}}}\]
Now cancelling the sin term,
\[ = \dfrac{{\sin x + 1}}{{\cos x.\sin x + \cos x}}\]
Taking cosx common from the denominator,
\[ = \dfrac{{\sin x + 1}}{{\cos x\left( {\sin x + 1} \right)}}\]
Cancelling the common term,
\[ = \dfrac{1}{{\cos x}}\]
We know that reciprocal of cosx is secx,
\[ = \sec x\]
Thus the answer is \[\dfrac{{1 + \cos ecx}}{{\cos x + \cot x}} = \sec x\]
So, the correct answer is “\[ \sec x\] ”.
Note: Note that, in these types of problems we use the trigonometric functions and their identities as per the need of the problem. Always try to write the equations in such a way that they can be simplified in an easy way. Like in the problem above we have taken help of sin function.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE