
Show that $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log 5-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ .
Answer
619.2k+ views
Hint: The given question is related to logarithms and its properties. Try to recall the properties of logarithms which are related to logarithm of product and division of two numbers and logarithms of numbers with exponents.
Complete step by step solution:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Let’s consider the LHS. We know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[4]{5}$ as ${{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}$ as ${{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}$ as ${{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}$ as ${{2}^{\dfrac{1}{2}}}$ .
Now , we need to find the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$.
We know , $\sqrt[4]{5}={{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}={{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}={{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}={{2}^{\dfrac{1}{2}}}$ . So , $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div {{\left( 18\times {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right)=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ and ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$
So, $\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)=\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)$ .
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$
We know we can write $18$ as $2\times 3\times 3$ .
So , $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2\times 3\times 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 3\times 3 \right)$ as $\log 2+\log 3+\log 3=\log 2+2\log 3$.
Now , after calculating all these values , we can write $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$ as $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\left( \log 2+2\log 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{1}{6}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)$.
Now , we will take $\log 2$ common.
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\log 2\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)-\dfrac{2}{3}\log 3$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 6=3\times 2\times 1 \\
& 10=2\times 5\times 1 \\
\end{align}\]
So , the LCM of the denominators is $2\times 3\times 5=30$.
So , $\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)=\dfrac{3-10-5}{30}=-\dfrac{12}{30}=-\dfrac{2}{5}$ .
So , we can write $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ as $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ .
Hence , the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ is $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$.
Hence, proved.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Complete step by step solution:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Let’s consider the LHS. We know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[4]{5}$ as ${{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}$ as ${{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}$ as ${{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}$ as ${{2}^{\dfrac{1}{2}}}$ .
Now , we need to find the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$.
We know , $\sqrt[4]{5}={{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}={{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}={{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}={{2}^{\dfrac{1}{2}}}$ . So , $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div {{\left( 18\times {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right)=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ and ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$
So, $\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)=\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)$ .
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$
We know we can write $18$ as $2\times 3\times 3$ .
So , $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2\times 3\times 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 3\times 3 \right)$ as $\log 2+\log 3+\log 3=\log 2+2\log 3$.
Now , after calculating all these values , we can write $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$ as $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\left( \log 2+2\log 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{1}{6}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)$.
Now , we will take $\log 2$ common.
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\log 2\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)-\dfrac{2}{3}\log 3$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 6=3\times 2\times 1 \\
& 10=2\times 5\times 1 \\
\end{align}\]
So , the LCM of the denominators is $2\times 3\times 5=30$.
So , $\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)=\dfrac{3-10-5}{30}=-\dfrac{12}{30}=-\dfrac{2}{5}$ .
So , we can write $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ as $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ .
Hence , the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ is $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$.
Hence, proved.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

