Answer
Verified
492k+ views
Hint: The given question is related to logarithms and its properties. Try to recall the properties of logarithms which are related to logarithm of product and division of two numbers and logarithms of numbers with exponents.
Complete step by step solution:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Let’s consider the LHS. We know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[4]{5}$ as ${{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}$ as ${{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}$ as ${{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}$ as ${{2}^{\dfrac{1}{2}}}$ .
Now , we need to find the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$.
We know , $\sqrt[4]{5}={{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}={{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}={{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}={{2}^{\dfrac{1}{2}}}$ . So , $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div {{\left( 18\times {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right)=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ and ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$
So, $\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)=\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)$ .
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$
We know we can write $18$ as $2\times 3\times 3$ .
So , $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2\times 3\times 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 3\times 3 \right)$ as $\log 2+\log 3+\log 3=\log 2+2\log 3$.
Now , after calculating all these values , we can write $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$ as $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\left( \log 2+2\log 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{1}{6}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)$.
Now , we will take $\log 2$ common.
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\log 2\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)-\dfrac{2}{3}\log 3$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 6=3\times 2\times 1 \\
& 10=2\times 5\times 1 \\
\end{align}\]
So , the LCM of the denominators is $2\times 3\times 5=30$.
So , $\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)=\dfrac{3-10-5}{30}=-\dfrac{12}{30}=-\dfrac{2}{5}$ .
So , we can write $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ as $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ .
Hence , the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ is $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$.
Hence, proved.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Complete step by step solution:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Let’s consider the LHS. We know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[4]{5}$ as ${{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}$ as ${{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}$ as ${{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}$ as ${{2}^{\dfrac{1}{2}}}$ .
Now , we need to find the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$.
We know , $\sqrt[4]{5}={{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}={{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}={{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}={{2}^{\dfrac{1}{2}}}$ . So , $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div {{\left( 18\times {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right)=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ and ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$
So, $\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)=\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)$ .
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$
We know we can write $18$ as $2\times 3\times 3$ .
So , $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2\times 3\times 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 3\times 3 \right)$ as $\log 2+\log 3+\log 3=\log 2+2\log 3$.
Now , after calculating all these values , we can write $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$ as $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\left( \log 2+2\log 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{1}{6}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)$.
Now , we will take $\log 2$ common.
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\log 2\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)-\dfrac{2}{3}\log 3$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 6=3\times 2\times 1 \\
& 10=2\times 5\times 1 \\
\end{align}\]
So , the LCM of the denominators is $2\times 3\times 5=30$.
So , $\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)=\dfrac{3-10-5}{30}=-\dfrac{12}{30}=-\dfrac{2}{5}$ .
So , we can write $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ as $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ .
Hence , the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ is $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$.
Hence, proved.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE