Show that \[{{\log }_{b}}a{{\log }_{c}}b{{\log }_{a}}c=1.\]
Answer
382.5k+ views
Hint: Use the base change property of logarithm to make each log with the same base . Change the base of each expression to either 10 or e.
Complete step-by-step answer:
We have the expression\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)\].
For a typical calculation, we can change logarithms to base 10 or e.
Let us use the base as 10 here.
\[\therefore {{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}\]
\[{{\log }_{10}}a\] can be written as \[\log a.\]
Similarly, \[\begin{align}
& {{\log }_{c}}b=\dfrac{{{\log }_{10}}b}{{{\log }_{10}}c}=\dfrac{logb}{\log c} \\
& {{\log }_{a}}c=\dfrac{{{\log }_{10}}c}{{{\log }_{10}}a}=\dfrac{\log c}{\log a} \\
\end{align}\]
Substituting these values in the expression, we get,
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{\log a}{\log b}\times \dfrac{\log b}{\log c}\times \dfrac{\log c}{\log a}.\]
Now let us cancel out \[\log a,\log b,\log c\] from the numerator and denominator we get the answer as 1.
\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Hence we have proved that \[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Note: We solved the problem using base k as 10. We know that the base can also be taken as k = e.
Then \[{{\log }_{b}}a=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b};{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c};{{\log }_{a}}c=\dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}.\]
By multiplying these, we still get the value as 1.
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}\times \dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}\times \dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}=1.\]
Complete step-by-step answer:
We have the expression\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)\].
For a typical calculation, we can change logarithms to base 10 or e.
Let us use the base as 10 here.
\[\therefore {{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}\]
\[{{\log }_{10}}a\] can be written as \[\log a.\]
Similarly, \[\begin{align}
& {{\log }_{c}}b=\dfrac{{{\log }_{10}}b}{{{\log }_{10}}c}=\dfrac{logb}{\log c} \\
& {{\log }_{a}}c=\dfrac{{{\log }_{10}}c}{{{\log }_{10}}a}=\dfrac{\log c}{\log a} \\
\end{align}\]
Substituting these values in the expression, we get,
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{\log a}{\log b}\times \dfrac{\log b}{\log c}\times \dfrac{\log c}{\log a}.\]
Now let us cancel out \[\log a,\log b,\log c\] from the numerator and denominator we get the answer as 1.
\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Hence we have proved that \[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Note: We solved the problem using base k as 10. We know that the base can also be taken as k = e.
Then \[{{\log }_{b}}a=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b};{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c};{{\log }_{a}}c=\dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}.\]
By multiplying these, we still get the value as 1.
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}\times \dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}\times \dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}=1.\]
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
