
Show that \[{{\log }_{b}}a{{\log }_{c}}b{{\log }_{a}}c=1.\]
Answer
605.4k+ views
Hint: Use the base change property of logarithm to make each log with the same base . Change the base of each expression to either 10 or e.
Complete step-by-step answer:
We have the expression\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)\].
For a typical calculation, we can change logarithms to base 10 or e.
Let us use the base as 10 here.
\[\therefore {{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}\]
\[{{\log }_{10}}a\] can be written as \[\log a.\]
Similarly, \[\begin{align}
& {{\log }_{c}}b=\dfrac{{{\log }_{10}}b}{{{\log }_{10}}c}=\dfrac{logb}{\log c} \\
& {{\log }_{a}}c=\dfrac{{{\log }_{10}}c}{{{\log }_{10}}a}=\dfrac{\log c}{\log a} \\
\end{align}\]
Substituting these values in the expression, we get,
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{\log a}{\log b}\times \dfrac{\log b}{\log c}\times \dfrac{\log c}{\log a}.\]
Now let us cancel out \[\log a,\log b,\log c\] from the numerator and denominator we get the answer as 1.
\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Hence we have proved that \[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Note: We solved the problem using base k as 10. We know that the base can also be taken as k = e.
Then \[{{\log }_{b}}a=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b};{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c};{{\log }_{a}}c=\dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}.\]
By multiplying these, we still get the value as 1.
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}\times \dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}\times \dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}=1.\]
Complete step-by-step answer:
We have the expression\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)\].
For a typical calculation, we can change logarithms to base 10 or e.
Let us use the base as 10 here.
\[\therefore {{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}\]
\[{{\log }_{10}}a\] can be written as \[\log a.\]
Similarly, \[\begin{align}
& {{\log }_{c}}b=\dfrac{{{\log }_{10}}b}{{{\log }_{10}}c}=\dfrac{logb}{\log c} \\
& {{\log }_{a}}c=\dfrac{{{\log }_{10}}c}{{{\log }_{10}}a}=\dfrac{\log c}{\log a} \\
\end{align}\]
Substituting these values in the expression, we get,
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{\log a}{\log b}\times \dfrac{\log b}{\log c}\times \dfrac{\log c}{\log a}.\]
Now let us cancel out \[\log a,\log b,\log c\] from the numerator and denominator we get the answer as 1.
\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Hence we have proved that \[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Note: We solved the problem using base k as 10. We know that the base can also be taken as k = e.
Then \[{{\log }_{b}}a=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b};{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c};{{\log }_{a}}c=\dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}.\]
By multiplying these, we still get the value as 1.
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}\times \dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}\times \dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}=1.\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

