
Show that \[{{\log }_{b}}a{{\log }_{c}}b{{\log }_{a}}c=1.\]
Answer
619.2k+ views
Hint: Use the base change property of logarithm to make each log with the same base . Change the base of each expression to either 10 or e.
Complete step-by-step answer:
We have the expression\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)\].
For a typical calculation, we can change logarithms to base 10 or e.
Let us use the base as 10 here.
\[\therefore {{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}\]
\[{{\log }_{10}}a\] can be written as \[\log a.\]
Similarly, \[\begin{align}
& {{\log }_{c}}b=\dfrac{{{\log }_{10}}b}{{{\log }_{10}}c}=\dfrac{logb}{\log c} \\
& {{\log }_{a}}c=\dfrac{{{\log }_{10}}c}{{{\log }_{10}}a}=\dfrac{\log c}{\log a} \\
\end{align}\]
Substituting these values in the expression, we get,
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{\log a}{\log b}\times \dfrac{\log b}{\log c}\times \dfrac{\log c}{\log a}.\]
Now let us cancel out \[\log a,\log b,\log c\] from the numerator and denominator we get the answer as 1.
\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Hence we have proved that \[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Note: We solved the problem using base k as 10. We know that the base can also be taken as k = e.
Then \[{{\log }_{b}}a=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b};{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c};{{\log }_{a}}c=\dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}.\]
By multiplying these, we still get the value as 1.
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}\times \dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}\times \dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}=1.\]
Complete step-by-step answer:
We have the expression\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)\].
For a typical calculation, we can change logarithms to base 10 or e.
Let us use the base as 10 here.
\[\therefore {{\log }_{b}}a=\dfrac{{{\log }_{10}}a}{{{\log }_{10}}b}=\dfrac{\log a}{\log b}\]
\[{{\log }_{10}}a\] can be written as \[\log a.\]
Similarly, \[\begin{align}
& {{\log }_{c}}b=\dfrac{{{\log }_{10}}b}{{{\log }_{10}}c}=\dfrac{logb}{\log c} \\
& {{\log }_{a}}c=\dfrac{{{\log }_{10}}c}{{{\log }_{10}}a}=\dfrac{\log c}{\log a} \\
\end{align}\]
Substituting these values in the expression, we get,
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{\log a}{\log b}\times \dfrac{\log b}{\log c}\times \dfrac{\log c}{\log a}.\]
Now let us cancel out \[\log a,\log b,\log c\] from the numerator and denominator we get the answer as 1.
\[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Hence we have proved that \[\left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=1.\]
Note: We solved the problem using base k as 10. We know that the base can also be taken as k = e.
Then \[{{\log }_{b}}a=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b};{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c};{{\log }_{a}}c=\dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}.\]
By multiplying these, we still get the value as 1.
\[\therefore \left( {{\log }_{b}}a \right)\left( {{\log }_{c}}b \right)\left( {{\log }_{a}}c \right)=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}\times \dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}\times \dfrac{{{\log }_{e}}c}{{{\log }_{e}}a}=1.\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

