Answer
Verified
373.8k+ views
Hint: To solve this question we need to know the concept of Binomial Expansion Theorem. The Theorem states that the expansion of any power ${{\left( a+b \right)}^{n}}$ of a binomial $\left( a+b \right)$ as a certain sum of products ${{a}_{i}}{{b}_{j}}$ . We will also be required to see the power of the number given to us. On substituting the number on the formula we will find the remainder.
Complete step by step solution:
The question asks us to find the remainder when a number which is given in the problem which is ${{14}^{{{15}^{16}}}}$, is divided by $5$. The first step is to write $14$ as a difference or sum of two numbers. The number chhosed should be such that one of the numbers is divisible by $5$ and the calculation also becomes easier. On analysing the power of $14$, which is ${{15}^{16}}$ we see that the power turns out to be an odd number. So the formula used will be:
$\Rightarrow {{\left( x-1 \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{0}}{{\left( -1 \right)}^{n}}+{}^{n}{{C}_{1}}{{x}^{1}}{{\left( -1 \right)}^{n-1}}+.........+{}^{n}{{C}_{n}}{{x}^{n}}{{\left( -1 \right)}^{0}}$
On substituting the number $15$ in place of $x$ , we get:
$\Rightarrow {{\left( 15-1 \right)}^{n}}={}^{n}{{C}_{0}}{{15}^{0}}{{\left( -1 \right)}^{n}}+{}^{n}{{C}_{1}}{{\left( 15 \right)}^{1}}{{\left( -1 \right)}^{n-1}}+.........+{}^{n}{{C}_{n}}{{\left( 15 \right)}^{n}}{{\left( -1 \right)}^{0}}$
On analysing the expansion we see that the value from the second term contains $15$ as one of their terms, so the terms from second place will be divisible by $5$, so the number which is not divisible by $5$ is the first term. Here the value of $n$ is an odd number as, if $15$ is multiplied any number of times the product we get will always be an odd number. So ${{(-1)}^{n}}$ will be $-1$ . The expansion gives us:
$\Rightarrow {}^{n}{{C}_{0}}{{15}^{0}}{{\left( -1 \right)}^{n}}=-1$
Since the value we get is $-1$, on dividing it by $5$, we get the remainder as $4$.
$\therefore $ The remainder when ${{14}^{{{15}^{16}}}}$ is divided by $5$ is $4$.
Note: The value of ${{(-1)}^{n}}$ is $-1$ when the value of $n$ is odd while the value of ${{(-1)}^{n}}$ will be $1$ when the value of $n$ is an even number. In this problem we have not calculated the power of $14$, which is ${{15}^{16}}$ because the value we will get will be very large, and there is no use of the value in the expansion in this case. We just need to know whether the value is odd or even.
Complete step by step solution:
The question asks us to find the remainder when a number which is given in the problem which is ${{14}^{{{15}^{16}}}}$, is divided by $5$. The first step is to write $14$ as a difference or sum of two numbers. The number chhosed should be such that one of the numbers is divisible by $5$ and the calculation also becomes easier. On analysing the power of $14$, which is ${{15}^{16}}$ we see that the power turns out to be an odd number. So the formula used will be:
$\Rightarrow {{\left( x-1 \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{0}}{{\left( -1 \right)}^{n}}+{}^{n}{{C}_{1}}{{x}^{1}}{{\left( -1 \right)}^{n-1}}+.........+{}^{n}{{C}_{n}}{{x}^{n}}{{\left( -1 \right)}^{0}}$
On substituting the number $15$ in place of $x$ , we get:
$\Rightarrow {{\left( 15-1 \right)}^{n}}={}^{n}{{C}_{0}}{{15}^{0}}{{\left( -1 \right)}^{n}}+{}^{n}{{C}_{1}}{{\left( 15 \right)}^{1}}{{\left( -1 \right)}^{n-1}}+.........+{}^{n}{{C}_{n}}{{\left( 15 \right)}^{n}}{{\left( -1 \right)}^{0}}$
On analysing the expansion we see that the value from the second term contains $15$ as one of their terms, so the terms from second place will be divisible by $5$, so the number which is not divisible by $5$ is the first term. Here the value of $n$ is an odd number as, if $15$ is multiplied any number of times the product we get will always be an odd number. So ${{(-1)}^{n}}$ will be $-1$ . The expansion gives us:
$\Rightarrow {}^{n}{{C}_{0}}{{15}^{0}}{{\left( -1 \right)}^{n}}=-1$
Since the value we get is $-1$, on dividing it by $5$, we get the remainder as $4$.
$\therefore $ The remainder when ${{14}^{{{15}^{16}}}}$ is divided by $5$ is $4$.
Note: The value of ${{(-1)}^{n}}$ is $-1$ when the value of $n$ is odd while the value of ${{(-1)}^{n}}$ will be $1$ when the value of $n$ is an even number. In this problem we have not calculated the power of $14$, which is ${{15}^{16}}$ because the value we will get will be very large, and there is no use of the value in the expansion in this case. We just need to know whether the value is odd or even.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths