
Prove the following trigonometric equation:
\[\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}=1+\sec A\operatorname{cosec}A\]
Answer
620.7k+ views
Hint: Here, first of all, simplify LHS by substituting \[\cot A=\dfrac{1}{\tan A}\] everywhere. Use formulas \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\] and \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] to simplify LHS. Finally, substitute \[\tan A=\dfrac{\sin A}{\cos A}\] to get the answer.
Complete step-by-step answer:
Here, we have to show that \[\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}=1+\sec A\operatorname{cosec}A\]
Let us consider the left-hand side (LHS) of the given expression as
\[E=\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}\]
First of all, we take the LCM of denominators, we get,
\[E=\dfrac{\tan A\left( 1-\tan A \right)+\cot A\left( 1-\cot A \right)}{\left( 1-\cot A \right)\left( 1-\tan A \right)}\]
Now, by simplifying the above expression, we get
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\cot A-{{\cot }^{2}}A}{{{1}^{2}}-\tan A-\cot A+\cot A.\tan A}\]
We know that, \[\tan A=\dfrac{1}{\cot A}\]
By multiplying cot A on both sides, we get,
\[\cot A.\tan A=\dfrac{\cot A}{\cot A}\]
Hence, \[\cot A.\tan A=1\]
By applying this in the above expression, we get,
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\cot A-{{\cot }^{2}}A}{1-\tan A-\cot A+1}\]
By further simplifying the above expression, we get,
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\cot A-{{\cot }^{2}}A}{2-\tan A-\cot A}\]
Now, by substituting \[\cot A=\dfrac{1}{\tan A}\] in the above expression, we get,
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\dfrac{1}{\tan A}-\dfrac{1}{{{\tan }^{2}}A}}{2-\tan A-\dfrac{1}{\tan A}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\dfrac{{{\tan }^{3}}A-{{\tan }^{4}}A+\tan A-1}{{{\tan }^{2}}A}}{\dfrac{2\tan A-{{\tan }^{2}}A-1}{\tan A}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\dfrac{{{\tan }^{3}}A-{{\tan }^{4}}A+\tan A-1}{\tan A}}{\dfrac{2\tan A-{{\tan }^{2}}A-1}{1}}\]
We can also write the above expression as,
\[E=\dfrac{{{\tan }^{3}}A-{{\tan }^{4}}A+\tan A-1}{\left( \tan A \right)\left( 2\tan A-{{\tan }^{2}}A-1 \right)}\]
By multiplying –1 on both numerator and denominator of the above expression, we get,
\[E=\dfrac{{{\tan }^{4}}A-{{\tan }^{3}}A-\tan A+1}{\left( \tan A \right)\left( {{\tan }^{2}}A-2\tan A+1 \right)}\]
We can also write the above expression as,
\[E=\dfrac{{{\tan }^{3}}A\left( \tan A-1 \right)-1\left( \tan A-1 \right)}{\left( \tan A \right)\left( {{\tan }^{2}}A-2\tan A+1 \right)}\]
By taking (tan A – 1) common in the numerator, we get,
\[E=\dfrac{\left( {{\tan }^{3}}A-1 \right)\left( \tan A-1 \right)}{\left( \tan A \right)\left( {{\tan }^{2}}A-2\tan A+1 \right)}\]
We know that \[{{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}\]. By applying this in the denominator, we get,
\[E=\dfrac{\left( {{\tan }^{3}}A-1 \right)\left( \tan A-1 \right)}{\left( \tan A \right){{\left( \tan A-1 \right)}^{2}}}\]
By cancelling the like terms, we get
\[E=\dfrac{\left( {{\tan }^{3}}A-{{1}^{3}} \right)}{\left( \tan A \right)\left( \tan A-1 \right)}\]
We know that \[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]. By applying this in the numerator, we get,
\[E=\dfrac{\left( \tan A-1 \right)\left( {{\tan }^{2}}A+\tan A+1 \right)}{\left( \tan A \right)\left( \tan A-1 \right)}\]
By cancelling the like terms, we get
\[E=\dfrac{\left( {{\tan }^{2}}A \right)+\left( \tan A \right)+1}{\left( \tan A \right)}\]
We can also write the above expression as,
\[E=\dfrac{{{\tan }^{2}}A}{\tan A}+\dfrac{\tan A}{\tan A}+\dfrac{1}{\tan A}\]
By cancelling the like terms, we get,
\[E=\tan A+1+\dfrac{1}{\tan A}\]
By substituting\[\tan A=\dfrac{\sin A}{\cos A}\], we get
\[E=\dfrac{\sin A}{\cos A}+\dfrac{1}{\dfrac{\sin A}{\cos A}}+1\]
Or, \[E=\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A}+1\]
By simplifying the above expression, we get,
\[E=\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\left( \cos A \right)\left( \sin A \right)}+1\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]. By applying this in the above expression, we get,
\[E=\dfrac{1}{\sin A\cos A}+1\]
Since we know that \[\sin A=\dfrac{1}{\operatorname{cosec}A}\] and \[\cos A=\dfrac{1}{\sec A}\]. We get,
\[E=\dfrac{1}{\dfrac{1}{\operatorname{cosec}A}.\dfrac{1}{\sec A}}+1\]
Therefore, we get,
\[E=\operatorname{cosec}A.\sec A+1=LHS\]
Therefore, E = LHS = RHS
Hence, we have shown that \[\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}=1+\sec A\operatorname{cosec}A\]
Note: Students can also solve this question by substituting \[\tan A=\dfrac{\sin A}{\cos A}\] and \[\cot A=\dfrac{\cos A}{\sin A}\] in the first step only. Students must take special care while taking \[{{\tan }^{2}}A\] as LCM in the numerator as they often make mistakes while writing the powers of tan A after taking the LCM. Also, students should always try to resolve the expression into factors by using identities like \[{{\left( a\pm b \right)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab\] \[\left( {{a}^{3}}\pm {{b}^{3}} \right)=\left( a\pm b \right)\left( {{a}^{2}}\mp ab+{{b}^{2}} \right)\] etc.
Complete step-by-step answer:
Here, we have to show that \[\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}=1+\sec A\operatorname{cosec}A\]
Let us consider the left-hand side (LHS) of the given expression as
\[E=\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}\]
First of all, we take the LCM of denominators, we get,
\[E=\dfrac{\tan A\left( 1-\tan A \right)+\cot A\left( 1-\cot A \right)}{\left( 1-\cot A \right)\left( 1-\tan A \right)}\]
Now, by simplifying the above expression, we get
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\cot A-{{\cot }^{2}}A}{{{1}^{2}}-\tan A-\cot A+\cot A.\tan A}\]
We know that, \[\tan A=\dfrac{1}{\cot A}\]
By multiplying cot A on both sides, we get,
\[\cot A.\tan A=\dfrac{\cot A}{\cot A}\]
Hence, \[\cot A.\tan A=1\]
By applying this in the above expression, we get,
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\cot A-{{\cot }^{2}}A}{1-\tan A-\cot A+1}\]
By further simplifying the above expression, we get,
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\cot A-{{\cot }^{2}}A}{2-\tan A-\cot A}\]
Now, by substituting \[\cot A=\dfrac{1}{\tan A}\] in the above expression, we get,
\[E=\dfrac{\tan A-{{\tan }^{2}}A+\dfrac{1}{\tan A}-\dfrac{1}{{{\tan }^{2}}A}}{2-\tan A-\dfrac{1}{\tan A}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\dfrac{{{\tan }^{3}}A-{{\tan }^{4}}A+\tan A-1}{{{\tan }^{2}}A}}{\dfrac{2\tan A-{{\tan }^{2}}A-1}{\tan A}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\dfrac{{{\tan }^{3}}A-{{\tan }^{4}}A+\tan A-1}{\tan A}}{\dfrac{2\tan A-{{\tan }^{2}}A-1}{1}}\]
We can also write the above expression as,
\[E=\dfrac{{{\tan }^{3}}A-{{\tan }^{4}}A+\tan A-1}{\left( \tan A \right)\left( 2\tan A-{{\tan }^{2}}A-1 \right)}\]
By multiplying –1 on both numerator and denominator of the above expression, we get,
\[E=\dfrac{{{\tan }^{4}}A-{{\tan }^{3}}A-\tan A+1}{\left( \tan A \right)\left( {{\tan }^{2}}A-2\tan A+1 \right)}\]
We can also write the above expression as,
\[E=\dfrac{{{\tan }^{3}}A\left( \tan A-1 \right)-1\left( \tan A-1 \right)}{\left( \tan A \right)\left( {{\tan }^{2}}A-2\tan A+1 \right)}\]
By taking (tan A – 1) common in the numerator, we get,
\[E=\dfrac{\left( {{\tan }^{3}}A-1 \right)\left( \tan A-1 \right)}{\left( \tan A \right)\left( {{\tan }^{2}}A-2\tan A+1 \right)}\]
We know that \[{{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}\]. By applying this in the denominator, we get,
\[E=\dfrac{\left( {{\tan }^{3}}A-1 \right)\left( \tan A-1 \right)}{\left( \tan A \right){{\left( \tan A-1 \right)}^{2}}}\]
By cancelling the like terms, we get
\[E=\dfrac{\left( {{\tan }^{3}}A-{{1}^{3}} \right)}{\left( \tan A \right)\left( \tan A-1 \right)}\]
We know that \[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]. By applying this in the numerator, we get,
\[E=\dfrac{\left( \tan A-1 \right)\left( {{\tan }^{2}}A+\tan A+1 \right)}{\left( \tan A \right)\left( \tan A-1 \right)}\]
By cancelling the like terms, we get
\[E=\dfrac{\left( {{\tan }^{2}}A \right)+\left( \tan A \right)+1}{\left( \tan A \right)}\]
We can also write the above expression as,
\[E=\dfrac{{{\tan }^{2}}A}{\tan A}+\dfrac{\tan A}{\tan A}+\dfrac{1}{\tan A}\]
By cancelling the like terms, we get,
\[E=\tan A+1+\dfrac{1}{\tan A}\]
By substituting\[\tan A=\dfrac{\sin A}{\cos A}\], we get
\[E=\dfrac{\sin A}{\cos A}+\dfrac{1}{\dfrac{\sin A}{\cos A}}+1\]
Or, \[E=\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A}+1\]
By simplifying the above expression, we get,
\[E=\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\left( \cos A \right)\left( \sin A \right)}+1\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]. By applying this in the above expression, we get,
\[E=\dfrac{1}{\sin A\cos A}+1\]
Since we know that \[\sin A=\dfrac{1}{\operatorname{cosec}A}\] and \[\cos A=\dfrac{1}{\sec A}\]. We get,
\[E=\dfrac{1}{\dfrac{1}{\operatorname{cosec}A}.\dfrac{1}{\sec A}}+1\]
Therefore, we get,
\[E=\operatorname{cosec}A.\sec A+1=LHS\]
Therefore, E = LHS = RHS
Hence, we have shown that \[\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}=1+\sec A\operatorname{cosec}A\]
Note: Students can also solve this question by substituting \[\tan A=\dfrac{\sin A}{\cos A}\] and \[\cot A=\dfrac{\cos A}{\sin A}\] in the first step only. Students must take special care while taking \[{{\tan }^{2}}A\] as LCM in the numerator as they often make mistakes while writing the powers of tan A after taking the LCM. Also, students should always try to resolve the expression into factors by using identities like \[{{\left( a\pm b \right)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab\] \[\left( {{a}^{3}}\pm {{b}^{3}} \right)=\left( a\pm b \right)\left( {{a}^{2}}\mp ab+{{b}^{2}} \right)\] etc.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

