
Prove the following:
( I ) \[\sec \theta (1 - \sin \theta )(\sec \theta + \tan \theta ) = 1\]
( ii ) \[{\cot ^2}\theta - {\tan ^2}\theta = \cos e{c^2}\theta - {\sec ^2}\theta \]
Answer
513.6k+ views
Hint: Here the question is related to the trigonometry topic. We have to prove the following trigonometric function. While solving we use the trigonometric identities and hence we determine the solution or we prove the given trigonometric functions.
Complete step by step answer:
The question is related to trigonometry and it includes the trigonometry ratios. The trigonometry ratios are sine, cosine, tan, cosec, sec, and cot.
Now consider the first sub question
( I ) \[\sec \theta (1 - \sin \theta )(\sec \theta + \tan \theta ) = 1\]
Consider the LHS
\[\sec \theta (1 - \sin \theta )(\sec \theta + \tan \theta )\]
First we multiply the \[\sec \theta \] to the \[(1 - \sin \theta )\] we get
\[ \Rightarrow \sec \theta - \sec \theta \sin \theta (\sec \theta + \tan \theta )\]
We know that the \[\sec \theta = \dfrac{1}{{\cos \theta }}\] so the above equation is written as
\[ \Rightarrow \sec \theta - \dfrac{{\sin \theta }}{{\cos \theta }}(\sec \theta + \tan \theta )\]
We know that the \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so the above equation is written as
\[ \Rightarrow (\sec \theta - \tan \theta )(\sec \theta + \tan \theta )\]
The equation is in the form of \[(a - b)(a + b)\], we have the algebraic formula \[(a - b)(a + b) = {a^2} - {b^2}\], so the equation can be written as
\[ \Rightarrow ({\sec ^2}\theta - {\tan ^2}\theta )\]
We know that the trigonometric identities \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \], the equation is written as
\[ \Rightarrow (1 + {\tan ^2}\theta - {\tan ^2}\theta )\]
On cancelling the \[{\tan ^2}\theta \] we get
\[ \Rightarrow 1\]
\[ = RHS\]
Hence we proved LHS = RHS
Now we prove the second sub question.
Now consider the second sub question
\[{\cot ^2}\theta - {\tan ^2}\theta = \cos e{c^2}\theta - {\sec ^2}\theta \]
Consider the LHS we have
\[ \Rightarrow {\cot ^2}\theta - {\tan ^2}\theta \]
We know the trigonometric identities \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] and \[1 + {\cot ^2}\theta = \cos e{c^2}\theta \], by using these trigonometric identities the above equation is written as
\[ \Rightarrow \cos e{c^2}\theta - 1 - ({\sec ^2}\theta - 1)\]
on simplifying we have
\[ \Rightarrow \cos e{c^2}\theta - 1 - {\sec ^2}\theta + 1\]
The +1 and -1 will gets cancels so we have
\[ \Rightarrow \cos e{c^2}\theta - {\sec ^2}\theta \]
\[ \Rightarrow RHS\]
Hence we proved LHS = RHS
Note: The question involves the trigonometric functions and we have to prove the trigonometric function. When we simplify the trigonometric functions and which will be equal to the RHS then the function is proved. While simplifying the trigonometric functions we must know about the trigonometric ratios and the trigonometric identities.
Complete step by step answer:
The question is related to trigonometry and it includes the trigonometry ratios. The trigonometry ratios are sine, cosine, tan, cosec, sec, and cot.
Now consider the first sub question
( I ) \[\sec \theta (1 - \sin \theta )(\sec \theta + \tan \theta ) = 1\]
Consider the LHS
\[\sec \theta (1 - \sin \theta )(\sec \theta + \tan \theta )\]
First we multiply the \[\sec \theta \] to the \[(1 - \sin \theta )\] we get
\[ \Rightarrow \sec \theta - \sec \theta \sin \theta (\sec \theta + \tan \theta )\]
We know that the \[\sec \theta = \dfrac{1}{{\cos \theta }}\] so the above equation is written as
\[ \Rightarrow \sec \theta - \dfrac{{\sin \theta }}{{\cos \theta }}(\sec \theta + \tan \theta )\]
We know that the \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so the above equation is written as
\[ \Rightarrow (\sec \theta - \tan \theta )(\sec \theta + \tan \theta )\]
The equation is in the form of \[(a - b)(a + b)\], we have the algebraic formula \[(a - b)(a + b) = {a^2} - {b^2}\], so the equation can be written as
\[ \Rightarrow ({\sec ^2}\theta - {\tan ^2}\theta )\]
We know that the trigonometric identities \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \], the equation is written as
\[ \Rightarrow (1 + {\tan ^2}\theta - {\tan ^2}\theta )\]
On cancelling the \[{\tan ^2}\theta \] we get
\[ \Rightarrow 1\]
\[ = RHS\]
Hence we proved LHS = RHS
Now we prove the second sub question.
Now consider the second sub question
\[{\cot ^2}\theta - {\tan ^2}\theta = \cos e{c^2}\theta - {\sec ^2}\theta \]
Consider the LHS we have
\[ \Rightarrow {\cot ^2}\theta - {\tan ^2}\theta \]
We know the trigonometric identities \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] and \[1 + {\cot ^2}\theta = \cos e{c^2}\theta \], by using these trigonometric identities the above equation is written as
\[ \Rightarrow \cos e{c^2}\theta - 1 - ({\sec ^2}\theta - 1)\]
on simplifying we have
\[ \Rightarrow \cos e{c^2}\theta - 1 - {\sec ^2}\theta + 1\]
The +1 and -1 will gets cancels so we have
\[ \Rightarrow \cos e{c^2}\theta - {\sec ^2}\theta \]
\[ \Rightarrow RHS\]
Hence we proved LHS = RHS
Note: The question involves the trigonometric functions and we have to prove the trigonometric function. When we simplify the trigonometric functions and which will be equal to the RHS then the function is proved. While simplifying the trigonometric functions we must know about the trigonometric ratios and the trigonometric identities.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

