Prove that the skew symmetric determinant of an odd order is zero.
\[\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Answer
326.4k+ views
Hint:
Consider the matrix as \[A\]. Find \[{{A}^{T}}\] of the matrix and prove that \[{{A}^{T}}=-A\] as to prove that it is skew symmetric. Then using properties prove that the determinant of \[A\]=$0$.
“Complete step-by-step answer:”
Let us consider the given matrix as A.
\[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
A matrix is called skew-symmetric if\[{{A}^{T}}=-A\], where \[{{A}^{T}}\]is the transpose of\[A\].
We can use the properties of determinants to solve the expression.
The given matrix is \[n\times n\] which is a \[3\times 3\] matrix where \[n=3\], which are the rows of the matrix and \[n=3\], which are the columns of the matrix.
For any \[n\times n\], matrix \[A\] and a scalar \[C\], we can say that,
\[\begin{align}
& \det (A)=det({{A}^{T}}) \\
& \Rightarrow det(cA)=cdet(A) \\
\end{align}\]
Suppose that n is an odd integer and let A be a \[n\times n\] skew-symmetric matrix. Thus we have\[{{A}^{T}}=-A\].
We have \[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Let us take \[{{A}^{T}}\], the rows become columns and vice-versa.
\[{{A}^{T}}=\left| \left( \begin{matrix}
0 & -b & c \\
b & 0 & -a \\
-c & a & 0 \\
\end{matrix} \right) \right|\]
Taking negative outside the determinant, we get,
\[{{A}^{T}}=-\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Hence the matrix is equal to \[-A.\]
\[\therefore {{A}^{T}}=-A\].
By definition of skew-symmetric, we have,
\[\det (A)=\det ({{A}^{T}})=\det (-A)\]
Hence \[A\] is a skew-symmetric matrix.
\[\therefore \det (A)={{(-1)}^{n}}\det (A)=-\det (A)\], equal to \[{{c}^{n}}\det (A),\]n is odd, where \[c=-1.\]
\[\begin{align}
& \Rightarrow \det (A)=-det(A) \\
& det(A)+det(A)=0 \\
& 2det(A)=0 \\
& \Rightarrow det(A)=0 \\
\end{align}\]
Hence we proved that the skew symmetric determinant of an odd order is zero.
Note:
We can prove it by supposing \[An\times n=\left[ aij \right]\] which is a skew symmetric matrix and we can prove that \[aii=0,\]for \[i=1,2,.......n\] and \[aij=-aji.\]
We can denote the \[{{(i,j)}^{th}}\]entry of \[{{A}^{T}}=ai{{j}^{T}}.\]
\[\Rightarrow {{A}^{T}}=aij\], i.e. the transpose of \[aij=aji.\]
Together with \[\begin{align}
& {{A}^{T}}=-A \\
& \Rightarrow ai{{j}^{T}}=-aji \\
& \Rightarrow aij=-aji \\
\end{align}\]
For \[i,j=1,2,3,.....n\]
when\[i=j\], we get that,
\[\begin{align}
& {{a}_{ii}}=-{{a}_{ii}} \\
& {{a}_{ii}}+{{a}_{ii}}=0 \\
& \Rightarrow 2{{a}_{ii}}=0 \\
& \therefore {{a}_{ii}}=0 \\
\end{align}\]
Consider the matrix as \[A\]. Find \[{{A}^{T}}\] of the matrix and prove that \[{{A}^{T}}=-A\] as to prove that it is skew symmetric. Then using properties prove that the determinant of \[A\]=$0$.
“Complete step-by-step answer:”
Let us consider the given matrix as A.
\[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
A matrix is called skew-symmetric if\[{{A}^{T}}=-A\], where \[{{A}^{T}}\]is the transpose of\[A\].
We can use the properties of determinants to solve the expression.
The given matrix is \[n\times n\] which is a \[3\times 3\] matrix where \[n=3\], which are the rows of the matrix and \[n=3\], which are the columns of the matrix.
For any \[n\times n\], matrix \[A\] and a scalar \[C\], we can say that,
\[\begin{align}
& \det (A)=det({{A}^{T}}) \\
& \Rightarrow det(cA)=cdet(A) \\
\end{align}\]
Suppose that n is an odd integer and let A be a \[n\times n\] skew-symmetric matrix. Thus we have\[{{A}^{T}}=-A\].
We have \[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Let us take \[{{A}^{T}}\], the rows become columns and vice-versa.
\[{{A}^{T}}=\left| \left( \begin{matrix}
0 & -b & c \\
b & 0 & -a \\
-c & a & 0 \\
\end{matrix} \right) \right|\]
Taking negative outside the determinant, we get,
\[{{A}^{T}}=-\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Hence the matrix is equal to \[-A.\]
\[\therefore {{A}^{T}}=-A\].
By definition of skew-symmetric, we have,
\[\det (A)=\det ({{A}^{T}})=\det (-A)\]
Hence \[A\] is a skew-symmetric matrix.
\[\therefore \det (A)={{(-1)}^{n}}\det (A)=-\det (A)\], equal to \[{{c}^{n}}\det (A),\]n is odd, where \[c=-1.\]
\[\begin{align}
& \Rightarrow \det (A)=-det(A) \\
& det(A)+det(A)=0 \\
& 2det(A)=0 \\
& \Rightarrow det(A)=0 \\
\end{align}\]
Hence we proved that the skew symmetric determinant of an odd order is zero.
Note:
We can prove it by supposing \[An\times n=\left[ aij \right]\] which is a skew symmetric matrix and we can prove that \[aii=0,\]for \[i=1,2,.......n\] and \[aij=-aji.\]
We can denote the \[{{(i,j)}^{th}}\]entry of \[{{A}^{T}}=ai{{j}^{T}}.\]
\[\Rightarrow {{A}^{T}}=aij\], i.e. the transpose of \[aij=aji.\]
Together with \[\begin{align}
& {{A}^{T}}=-A \\
& \Rightarrow ai{{j}^{T}}=-aji \\
& \Rightarrow aij=-aji \\
\end{align}\]
For \[i,j=1,2,3,.....n\]
when\[i=j\], we get that,
\[\begin{align}
& {{a}_{ii}}=-{{a}_{ii}} \\
& {{a}_{ii}}+{{a}_{ii}}=0 \\
& \Rightarrow 2{{a}_{ii}}=0 \\
& \therefore {{a}_{ii}}=0 \\
\end{align}\]
Last updated date: 01st Jun 2023
•
Total views: 326.4k
•
Views today: 4.82k
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
