Answer
Verified
465.9k+ views
Hint:
Consider the matrix as \[A\]. Find \[{{A}^{T}}\] of the matrix and prove that \[{{A}^{T}}=-A\] as to prove that it is skew symmetric. Then using properties prove that the determinant of \[A\]=$0$.
“Complete step-by-step answer:”
Let us consider the given matrix as A.
\[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
A matrix is called skew-symmetric if\[{{A}^{T}}=-A\], where \[{{A}^{T}}\]is the transpose of\[A\].
We can use the properties of determinants to solve the expression.
The given matrix is \[n\times n\] which is a \[3\times 3\] matrix where \[n=3\], which are the rows of the matrix and \[n=3\], which are the columns of the matrix.
For any \[n\times n\], matrix \[A\] and a scalar \[C\], we can say that,
\[\begin{align}
& \det (A)=det({{A}^{T}}) \\
& \Rightarrow det(cA)=cdet(A) \\
\end{align}\]
Suppose that n is an odd integer and let A be a \[n\times n\] skew-symmetric matrix. Thus we have\[{{A}^{T}}=-A\].
We have \[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Let us take \[{{A}^{T}}\], the rows become columns and vice-versa.
\[{{A}^{T}}=\left| \left( \begin{matrix}
0 & -b & c \\
b & 0 & -a \\
-c & a & 0 \\
\end{matrix} \right) \right|\]
Taking negative outside the determinant, we get,
\[{{A}^{T}}=-\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Hence the matrix is equal to \[-A.\]
\[\therefore {{A}^{T}}=-A\].
By definition of skew-symmetric, we have,
\[\det (A)=\det ({{A}^{T}})=\det (-A)\]
Hence \[A\] is a skew-symmetric matrix.
\[\therefore \det (A)={{(-1)}^{n}}\det (A)=-\det (A)\], equal to \[{{c}^{n}}\det (A),\]n is odd, where \[c=-1.\]
\[\begin{align}
& \Rightarrow \det (A)=-det(A) \\
& det(A)+det(A)=0 \\
& 2det(A)=0 \\
& \Rightarrow det(A)=0 \\
\end{align}\]
Hence we proved that the skew symmetric determinant of an odd order is zero.
Note:
We can prove it by supposing \[An\times n=\left[ aij \right]\] which is a skew symmetric matrix and we can prove that \[aii=0,\]for \[i=1,2,.......n\] and \[aij=-aji.\]
We can denote the \[{{(i,j)}^{th}}\]entry of \[{{A}^{T}}=ai{{j}^{T}}.\]
\[\Rightarrow {{A}^{T}}=aij\], i.e. the transpose of \[aij=aji.\]
Together with \[\begin{align}
& {{A}^{T}}=-A \\
& \Rightarrow ai{{j}^{T}}=-aji \\
& \Rightarrow aij=-aji \\
\end{align}\]
For \[i,j=1,2,3,.....n\]
when\[i=j\], we get that,
\[\begin{align}
& {{a}_{ii}}=-{{a}_{ii}} \\
& {{a}_{ii}}+{{a}_{ii}}=0 \\
& \Rightarrow 2{{a}_{ii}}=0 \\
& \therefore {{a}_{ii}}=0 \\
\end{align}\]
Consider the matrix as \[A\]. Find \[{{A}^{T}}\] of the matrix and prove that \[{{A}^{T}}=-A\] as to prove that it is skew symmetric. Then using properties prove that the determinant of \[A\]=$0$.
“Complete step-by-step answer:”
Let us consider the given matrix as A.
\[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
A matrix is called skew-symmetric if\[{{A}^{T}}=-A\], where \[{{A}^{T}}\]is the transpose of\[A\].
We can use the properties of determinants to solve the expression.
The given matrix is \[n\times n\] which is a \[3\times 3\] matrix where \[n=3\], which are the rows of the matrix and \[n=3\], which are the columns of the matrix.
For any \[n\times n\], matrix \[A\] and a scalar \[C\], we can say that,
\[\begin{align}
& \det (A)=det({{A}^{T}}) \\
& \Rightarrow det(cA)=cdet(A) \\
\end{align}\]
Suppose that n is an odd integer and let A be a \[n\times n\] skew-symmetric matrix. Thus we have\[{{A}^{T}}=-A\].
We have \[A=\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Let us take \[{{A}^{T}}\], the rows become columns and vice-versa.
\[{{A}^{T}}=\left| \left( \begin{matrix}
0 & -b & c \\
b & 0 & -a \\
-c & a & 0 \\
\end{matrix} \right) \right|\]
Taking negative outside the determinant, we get,
\[{{A}^{T}}=-\left| \left( \begin{matrix}
0 & b & -c \\
-b & 0 & a \\
c & -a & 0 \\
\end{matrix} \right) \right|\]
Hence the matrix is equal to \[-A.\]
\[\therefore {{A}^{T}}=-A\].
By definition of skew-symmetric, we have,
\[\det (A)=\det ({{A}^{T}})=\det (-A)\]
Hence \[A\] is a skew-symmetric matrix.
\[\therefore \det (A)={{(-1)}^{n}}\det (A)=-\det (A)\], equal to \[{{c}^{n}}\det (A),\]n is odd, where \[c=-1.\]
\[\begin{align}
& \Rightarrow \det (A)=-det(A) \\
& det(A)+det(A)=0 \\
& 2det(A)=0 \\
& \Rightarrow det(A)=0 \\
\end{align}\]
Hence we proved that the skew symmetric determinant of an odd order is zero.
Note:
We can prove it by supposing \[An\times n=\left[ aij \right]\] which is a skew symmetric matrix and we can prove that \[aii=0,\]for \[i=1,2,.......n\] and \[aij=-aji.\]
We can denote the \[{{(i,j)}^{th}}\]entry of \[{{A}^{T}}=ai{{j}^{T}}.\]
\[\Rightarrow {{A}^{T}}=aij\], i.e. the transpose of \[aij=aji.\]
Together with \[\begin{align}
& {{A}^{T}}=-A \\
& \Rightarrow ai{{j}^{T}}=-aji \\
& \Rightarrow aij=-aji \\
\end{align}\]
For \[i,j=1,2,3,.....n\]
when\[i=j\], we get that,
\[\begin{align}
& {{a}_{ii}}=-{{a}_{ii}} \\
& {{a}_{ii}}+{{a}_{ii}}=0 \\
& \Rightarrow 2{{a}_{ii}}=0 \\
& \therefore {{a}_{ii}}=0 \\
\end{align}\]
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE