
Prove that \[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]$ = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Answer
568.2k+ views
Hint: Use trigonometric substitution. Substitute $x$ in such a way that $1 + {x^2}$ becomes square of some term. Then it would come out of square root sign and you will be able to solve the question.
Complete step-by-step answer:
L.H.S \[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]
Put ${x^2} = \cos 2\theta $
$ \Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right]$ . . . (1)
We know that,
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$ = {\cos ^2}\theta - (1 - {\cos ^2}\theta )$
$ = {\cos ^2}\theta - 1 + {\cos ^2}\theta $
$ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1$
Substitute this value in equation (1). We get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + 2{{\cos }^2}\theta - 1} + \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}{{\sqrt {1 + 2{{\cos }^2}\theta - 1} - \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}} \right]\]
By simplifying it, we get
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {1 - 2{{\cos }^2}\theta + 1} }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {1 - 2{{\cos }^2}\theta + 1} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2 - 2{{\cos }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2 - 2{{\cos }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2(1 - {{\cos }^2}\theta } )}}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2(1 - {{\cos }^2}\theta )} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right]\]
Dividing numerator and denominator by $\sqrt 2 $ inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {{{\cos }^2}\theta } + \sqrt {{{\sin }^2}\theta } }}{{\sqrt {{{\cos }^2}\theta } - \sqrt {{{\sin }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right]\]
Dividing numerator and denominator by \[\cos \theta \] inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}} \right]\]
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - 1 \times \tan \theta }}} \right]$ $\left( {\because 1 \times \tan \theta = \tan \theta } \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \theta }}} \right]$ $\left( {\because \tan \left( {\dfrac{\pi }{4}} \right) = 1} \right)$
$ = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$ $\left( {\because \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$
$ = \dfrac{\pi }{4} + \theta $ $\left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right)$ . . . (2)
Now,
${x^2} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {{x^2}} \right) = 2\theta $
By rearranging it, we get
$2\theta = {\cos ^{ - 1}}\left( {{x^2}} \right)$
$ \Rightarrow \theta = \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Substituting this value in equation (2), we get
$\dfrac{\pi }{4} + \theta = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
= R.H.S.
Hence, it is proved that
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)\]
Note: For the question to exist, $\sqrt {1 - {x^2}} $ should exist.
For $\sqrt {1 - {x^2}} $ to exist, $1 - {x^2} \geqslant 0$
Because, the square root of a negative term will not exist.
$ \Rightarrow 1 \geqslant {x^2}$
$ \Rightarrow {x^2} \leqslant 1$ . . . (2)
But a square term is never negative.
$ \Rightarrow {x^2} \geqslant 0$ . . . (3)
From equation (2) and (3), we get
$0 \leqslant {x^2} \leqslant 1$
$ \Rightarrow 0 \leqslant \cos 2\theta \leqslant 1$ $\left( {\because {x^2} = \cos 2\theta } \right)$
Therefore, we could substitute, ${x^2} = \cos 2\theta $
Complete step-by-step answer:
L.H.S \[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]
Put ${x^2} = \cos 2\theta $
$ \Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right]$ . . . (1)
We know that,
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$ = {\cos ^2}\theta - (1 - {\cos ^2}\theta )$
$ = {\cos ^2}\theta - 1 + {\cos ^2}\theta $
$ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1$
Substitute this value in equation (1). We get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + 2{{\cos }^2}\theta - 1} + \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}{{\sqrt {1 + 2{{\cos }^2}\theta - 1} - \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}} \right]\]
By simplifying it, we get
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {1 - 2{{\cos }^2}\theta + 1} }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {1 - 2{{\cos }^2}\theta + 1} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2 - 2{{\cos }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2 - 2{{\cos }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2(1 - {{\cos }^2}\theta } )}}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2(1 - {{\cos }^2}\theta )} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right]\]
Dividing numerator and denominator by $\sqrt 2 $ inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {{{\cos }^2}\theta } + \sqrt {{{\sin }^2}\theta } }}{{\sqrt {{{\cos }^2}\theta } - \sqrt {{{\sin }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right]\]
Dividing numerator and denominator by \[\cos \theta \] inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}} \right]\]
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - 1 \times \tan \theta }}} \right]$ $\left( {\because 1 \times \tan \theta = \tan \theta } \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \theta }}} \right]$ $\left( {\because \tan \left( {\dfrac{\pi }{4}} \right) = 1} \right)$
$ = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$ $\left( {\because \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$
$ = \dfrac{\pi }{4} + \theta $ $\left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right)$ . . . (2)
Now,
${x^2} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {{x^2}} \right) = 2\theta $
By rearranging it, we get
$2\theta = {\cos ^{ - 1}}\left( {{x^2}} \right)$
$ \Rightarrow \theta = \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Substituting this value in equation (2), we get
$\dfrac{\pi }{4} + \theta = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
= R.H.S.
Hence, it is proved that
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)\]
Note: For the question to exist, $\sqrt {1 - {x^2}} $ should exist.
For $\sqrt {1 - {x^2}} $ to exist, $1 - {x^2} \geqslant 0$
Because, the square root of a negative term will not exist.
$ \Rightarrow 1 \geqslant {x^2}$
$ \Rightarrow {x^2} \leqslant 1$ . . . (2)
But a square term is never negative.
$ \Rightarrow {x^2} \geqslant 0$ . . . (3)
From equation (2) and (3), we get
$0 \leqslant {x^2} \leqslant 1$
$ \Rightarrow 0 \leqslant \cos 2\theta \leqslant 1$ $\left( {\because {x^2} = \cos 2\theta } \right)$
Therefore, we could substitute, ${x^2} = \cos 2\theta $
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

