
Prove that \[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]$ = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Answer
563.7k+ views
Hint: Use trigonometric substitution. Substitute $x$ in such a way that $1 + {x^2}$ becomes square of some term. Then it would come out of square root sign and you will be able to solve the question.
Complete step-by-step answer:
L.H.S \[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]
Put ${x^2} = \cos 2\theta $
$ \Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right]$ . . . (1)
We know that,
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$ = {\cos ^2}\theta - (1 - {\cos ^2}\theta )$
$ = {\cos ^2}\theta - 1 + {\cos ^2}\theta $
$ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1$
Substitute this value in equation (1). We get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + 2{{\cos }^2}\theta - 1} + \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}{{\sqrt {1 + 2{{\cos }^2}\theta - 1} - \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}} \right]\]
By simplifying it, we get
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {1 - 2{{\cos }^2}\theta + 1} }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {1 - 2{{\cos }^2}\theta + 1} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2 - 2{{\cos }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2 - 2{{\cos }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2(1 - {{\cos }^2}\theta } )}}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2(1 - {{\cos }^2}\theta )} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right]\]
Dividing numerator and denominator by $\sqrt 2 $ inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {{{\cos }^2}\theta } + \sqrt {{{\sin }^2}\theta } }}{{\sqrt {{{\cos }^2}\theta } - \sqrt {{{\sin }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right]\]
Dividing numerator and denominator by \[\cos \theta \] inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}} \right]\]
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - 1 \times \tan \theta }}} \right]$ $\left( {\because 1 \times \tan \theta = \tan \theta } \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \theta }}} \right]$ $\left( {\because \tan \left( {\dfrac{\pi }{4}} \right) = 1} \right)$
$ = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$ $\left( {\because \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$
$ = \dfrac{\pi }{4} + \theta $ $\left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right)$ . . . (2)
Now,
${x^2} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {{x^2}} \right) = 2\theta $
By rearranging it, we get
$2\theta = {\cos ^{ - 1}}\left( {{x^2}} \right)$
$ \Rightarrow \theta = \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Substituting this value in equation (2), we get
$\dfrac{\pi }{4} + \theta = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
= R.H.S.
Hence, it is proved that
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)\]
Note: For the question to exist, $\sqrt {1 - {x^2}} $ should exist.
For $\sqrt {1 - {x^2}} $ to exist, $1 - {x^2} \geqslant 0$
Because, the square root of a negative term will not exist.
$ \Rightarrow 1 \geqslant {x^2}$
$ \Rightarrow {x^2} \leqslant 1$ . . . (2)
But a square term is never negative.
$ \Rightarrow {x^2} \geqslant 0$ . . . (3)
From equation (2) and (3), we get
$0 \leqslant {x^2} \leqslant 1$
$ \Rightarrow 0 \leqslant \cos 2\theta \leqslant 1$ $\left( {\because {x^2} = \cos 2\theta } \right)$
Therefore, we could substitute, ${x^2} = \cos 2\theta $
Complete step-by-step answer:
L.H.S \[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]
Put ${x^2} = \cos 2\theta $
$ \Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right]$ . . . (1)
We know that,
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$ = {\cos ^2}\theta - (1 - {\cos ^2}\theta )$
$ = {\cos ^2}\theta - 1 + {\cos ^2}\theta $
$ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1$
Substitute this value in equation (1). We get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + 2{{\cos }^2}\theta - 1} + \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}{{\sqrt {1 + 2{{\cos }^2}\theta - 1} - \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}} \right]\]
By simplifying it, we get
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {1 - 2{{\cos }^2}\theta + 1} }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {1 - 2{{\cos }^2}\theta + 1} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2 - 2{{\cos }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2 - 2{{\cos }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2(1 - {{\cos }^2}\theta } )}}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2(1 - {{\cos }^2}\theta )} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right]\]
Dividing numerator and denominator by $\sqrt 2 $ inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {{{\cos }^2}\theta } + \sqrt {{{\sin }^2}\theta } }}{{\sqrt {{{\cos }^2}\theta } - \sqrt {{{\sin }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right]\]
Dividing numerator and denominator by \[\cos \theta \] inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}} \right]\]
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - 1 \times \tan \theta }}} \right]$ $\left( {\because 1 \times \tan \theta = \tan \theta } \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \theta }}} \right]$ $\left( {\because \tan \left( {\dfrac{\pi }{4}} \right) = 1} \right)$
$ = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$ $\left( {\because \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$
$ = \dfrac{\pi }{4} + \theta $ $\left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right)$ . . . (2)
Now,
${x^2} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {{x^2}} \right) = 2\theta $
By rearranging it, we get
$2\theta = {\cos ^{ - 1}}\left( {{x^2}} \right)$
$ \Rightarrow \theta = \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Substituting this value in equation (2), we get
$\dfrac{\pi }{4} + \theta = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
= R.H.S.
Hence, it is proved that
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)\]
Note: For the question to exist, $\sqrt {1 - {x^2}} $ should exist.
For $\sqrt {1 - {x^2}} $ to exist, $1 - {x^2} \geqslant 0$
Because, the square root of a negative term will not exist.
$ \Rightarrow 1 \geqslant {x^2}$
$ \Rightarrow {x^2} \leqslant 1$ . . . (2)
But a square term is never negative.
$ \Rightarrow {x^2} \geqslant 0$ . . . (3)
From equation (2) and (3), we get
$0 \leqslant {x^2} \leqslant 1$
$ \Rightarrow 0 \leqslant \cos 2\theta \leqslant 1$ $\left( {\because {x^2} = \cos 2\theta } \right)$
Therefore, we could substitute, ${x^2} = \cos 2\theta $
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

