
Prove that \[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]$ = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Answer
582.6k+ views
Hint: Use trigonometric substitution. Substitute $x$ in such a way that $1 + {x^2}$ becomes square of some term. Then it would come out of square root sign and you will be able to solve the question.
Complete step-by-step answer:
L.H.S \[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]
Put ${x^2} = \cos 2\theta $
$ \Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right]$ . . . (1)
We know that,
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$ = {\cos ^2}\theta - (1 - {\cos ^2}\theta )$
$ = {\cos ^2}\theta - 1 + {\cos ^2}\theta $
$ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1$
Substitute this value in equation (1). We get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + 2{{\cos }^2}\theta - 1} + \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}{{\sqrt {1 + 2{{\cos }^2}\theta - 1} - \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}} \right]\]
By simplifying it, we get
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {1 - 2{{\cos }^2}\theta + 1} }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {1 - 2{{\cos }^2}\theta + 1} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2 - 2{{\cos }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2 - 2{{\cos }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2(1 - {{\cos }^2}\theta } )}}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2(1 - {{\cos }^2}\theta )} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right]\]
Dividing numerator and denominator by $\sqrt 2 $ inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {{{\cos }^2}\theta } + \sqrt {{{\sin }^2}\theta } }}{{\sqrt {{{\cos }^2}\theta } - \sqrt {{{\sin }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right]\]
Dividing numerator and denominator by \[\cos \theta \] inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}} \right]\]
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - 1 \times \tan \theta }}} \right]$ $\left( {\because 1 \times \tan \theta = \tan \theta } \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \theta }}} \right]$ $\left( {\because \tan \left( {\dfrac{\pi }{4}} \right) = 1} \right)$
$ = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$ $\left( {\because \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$
$ = \dfrac{\pi }{4} + \theta $ $\left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right)$ . . . (2)
Now,
${x^2} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {{x^2}} \right) = 2\theta $
By rearranging it, we get
$2\theta = {\cos ^{ - 1}}\left( {{x^2}} \right)$
$ \Rightarrow \theta = \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Substituting this value in equation (2), we get
$\dfrac{\pi }{4} + \theta = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
= R.H.S.
Hence, it is proved that
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)\]
Note: For the question to exist, $\sqrt {1 - {x^2}} $ should exist.
For $\sqrt {1 - {x^2}} $ to exist, $1 - {x^2} \geqslant 0$
Because, the square root of a negative term will not exist.
$ \Rightarrow 1 \geqslant {x^2}$
$ \Rightarrow {x^2} \leqslant 1$ . . . (2)
But a square term is never negative.
$ \Rightarrow {x^2} \geqslant 0$ . . . (3)
From equation (2) and (3), we get
$0 \leqslant {x^2} \leqslant 1$
$ \Rightarrow 0 \leqslant \cos 2\theta \leqslant 1$ $\left( {\because {x^2} = \cos 2\theta } \right)$
Therefore, we could substitute, ${x^2} = \cos 2\theta $
Complete step-by-step answer:
L.H.S \[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right]\]
Put ${x^2} = \cos 2\theta $
$ \Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right]$ . . . (1)
We know that,
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$ = {\cos ^2}\theta - (1 - {\cos ^2}\theta )$
$ = {\cos ^2}\theta - 1 + {\cos ^2}\theta $
$ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1$
Substitute this value in equation (1). We get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + 2{{\cos }^2}\theta - 1} + \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}{{\sqrt {1 + 2{{\cos }^2}\theta - 1} - \sqrt {1 - (2{{\cos }^2}\theta - 1)} }}} \right]\]
By simplifying it, we get
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {1 - 2{{\cos }^2}\theta + 1} }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {1 - 2{{\cos }^2}\theta + 1} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2 - 2{{\cos }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2 - 2{{\cos }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2(1 - {{\cos }^2}\theta } )}}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2(1 - {{\cos }^2}\theta )} }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right]\]
Dividing numerator and denominator by $\sqrt 2 $ inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {{{\cos }^2}\theta } + \sqrt {{{\sin }^2}\theta } }}{{\sqrt {{{\cos }^2}\theta } - \sqrt {{{\sin }^2}\theta } }}} \right]\]
\[ = {\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right]\]
Dividing numerator and denominator by \[\cos \theta \] inside ${\tan ^{ - 1}}$, we get
\[{\tan ^{ - 1}}\left[ {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right] = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}} \right]\]
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - 1 \times \tan \theta }}} \right]$ $\left( {\because 1 \times \tan \theta = \tan \theta } \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \theta }}} \right]$ $\left( {\because \tan \left( {\dfrac{\pi }{4}} \right) = 1} \right)$
$ = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$ $\left( {\because \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$
$ = \dfrac{\pi }{4} + \theta $ $\left( {\because {{\tan }^{ - 1}}(\tan \theta ) = \theta } \right)$ . . . (2)
Now,
${x^2} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {{x^2}} \right) = 2\theta $
By rearranging it, we get
$2\theta = {\cos ^{ - 1}}\left( {{x^2}} \right)$
$ \Rightarrow \theta = \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
Substituting this value in equation (2), we get
$\dfrac{\pi }{4} + \theta = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$
= R.H.S.
Hence, it is proved that
\[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right] = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)\]
Note: For the question to exist, $\sqrt {1 - {x^2}} $ should exist.
For $\sqrt {1 - {x^2}} $ to exist, $1 - {x^2} \geqslant 0$
Because, the square root of a negative term will not exist.
$ \Rightarrow 1 \geqslant {x^2}$
$ \Rightarrow {x^2} \leqslant 1$ . . . (2)
But a square term is never negative.
$ \Rightarrow {x^2} \geqslant 0$ . . . (3)
From equation (2) and (3), we get
$0 \leqslant {x^2} \leqslant 1$
$ \Rightarrow 0 \leqslant \cos 2\theta \leqslant 1$ $\left( {\because {x^2} = \cos 2\theta } \right)$
Therefore, we could substitute, ${x^2} = \cos 2\theta $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

