Answer

Verified

350.1k+ views

**Hint:**For solving this question you should know about the general form of trigonometric functions. In this problem we will solve it with the help of a right triangle and applying Pythagoras Theorem on that. That will provide us with the final answer and here we can consider the value of $\theta $ as 2.

**Complete step by step answer:**

According to our question it is asked of us to prove that ${{\sin }^{2}}2+{{\cos }^{2}}2=1$. Here we can see that this is given in a form of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. So, here we can consider the value of $\theta $ as 2. So, now our question is to prove, ${{\sin }^{2}}2+{{\cos }^{2}}2=1$. For this we will use a right triangle. And then we will apply Pythagoras Theorem for proving this and we will also keep in mind that $\dfrac{P}{H}=\sin \theta $ and $\dfrac{B}{H}=\cos \theta $. Here P stands for perpendicular, H stands for hypotenuse and B stands for base. Now if we make a right triangle as follows,

Now, let angle A be $\theta $. We will apply the theorem of Pythagoras Theorem, that is, ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, where a is the value of perpendicular, b is the value of base and c is the value of hypotenuse. So, we will get it as,

$\begin{align}

& \text{perpendicula}{{\text{r}}^{2}}+\text{bas}{{\text{e}}^{2}}=\text{hypotenus}{{\text{e}}^{2}} \\

& \Rightarrow AB{{}^{2}}+B{{C}^{2}}=A{{C}^{2}} \\

\end{align}$

Dividing the above equation by $A{{C}^{2}}$, we will get,

$\begin{align}

& \dfrac{A{{B}^{2}}+B{{C}^{2}}}{A{{C}^{2}}}=\dfrac{A{{C}^{2}}}{A{{C}^{2}}} \\

& \Rightarrow \dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1 \\

\end{align}$

We know that,

$\dfrac{P}{H}=\sin \theta $

$\dfrac{B}{H}=\cos \theta $

Now in the equation, $\dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1$,

$\Rightarrow \dfrac{AB}{AC}=\sin \theta ,\dfrac{BC}{AC}=\cos \theta $

Thus we get the conclusion that,

${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$

And as we have assumed that $\theta =2$,

So, ${{\sin }^{2}}2+{{\cos }^{2}}2=1$.

Hence it is proved.

**Note:**Pythagoras Theorem, that is, $\text{perpendicula}{{\text{r}}^{2}}+\text{bas}{{\text{e}}^{2}}=\text{hypotenus}{{\text{e}}^{2}}$ is used in this question is the most basic theorem in mathematics and to be used in most questions like this with right angled triangles. Do not forget that, $\dfrac{P}{H}=\sin \theta ,\dfrac{B}{H}=\cos \theta ,\dfrac{P}{B}=\tan \theta $.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers