Prove that: ${{\sin }^{2}}2+{{\cos }^{2}}2=1$.
Answer
Verified
403.8k+ views
Hint: For solving this question you should know about the general form of trigonometric functions. In this problem we will solve it with the help of a right triangle and applying Pythagoras Theorem on that. That will provide us with the final answer and here we can consider the value of $\theta $ as 2.
Complete step by step answer:
According to our question it is asked of us to prove that ${{\sin }^{2}}2+{{\cos }^{2}}2=1$. Here we can see that this is given in a form of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. So, here we can consider the value of $\theta $ as 2. So, now our question is to prove, ${{\sin }^{2}}2+{{\cos }^{2}}2=1$. For this we will use a right triangle. And then we will apply Pythagoras Theorem for proving this and we will also keep in mind that $\dfrac{P}{H}=\sin \theta $ and $\dfrac{B}{H}=\cos \theta $. Here P stands for perpendicular, H stands for hypotenuse and B stands for base. Now if we make a right triangle as follows,
Now, let angle A be $\theta $. We will apply the theorem of Pythagoras Theorem, that is, ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, where a is the value of perpendicular, b is the value of base and c is the value of hypotenuse. So, we will get it as,
$\begin{align}
& \text{perpendicula}{{\text{r}}^{2}}+\text{bas}{{\text{e}}^{2}}=\text{hypotenus}{{\text{e}}^{2}} \\
& \Rightarrow AB{{}^{2}}+B{{C}^{2}}=A{{C}^{2}} \\
\end{align}$
Dividing the above equation by $A{{C}^{2}}$, we will get,
$\begin{align}
& \dfrac{A{{B}^{2}}+B{{C}^{2}}}{A{{C}^{2}}}=\dfrac{A{{C}^{2}}}{A{{C}^{2}}} \\
& \Rightarrow \dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1 \\
\end{align}$
We know that,
$\dfrac{P}{H}=\sin \theta $
$\dfrac{B}{H}=\cos \theta $
Now in the equation, $\dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1$,
$\Rightarrow \dfrac{AB}{AC}=\sin \theta ,\dfrac{BC}{AC}=\cos \theta $
Thus we get the conclusion that,
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
And as we have assumed that $\theta =2$,
So, ${{\sin }^{2}}2+{{\cos }^{2}}2=1$.
Hence it is proved.
Note: Pythagoras Theorem, that is, $\text{perpendicula}{{\text{r}}^{2}}+\text{bas}{{\text{e}}^{2}}=\text{hypotenus}{{\text{e}}^{2}}$ is used in this question is the most basic theorem in mathematics and to be used in most questions like this with right angled triangles. Do not forget that, $\dfrac{P}{H}=\sin \theta ,\dfrac{B}{H}=\cos \theta ,\dfrac{P}{B}=\tan \theta $.
Complete step by step answer:
According to our question it is asked of us to prove that ${{\sin }^{2}}2+{{\cos }^{2}}2=1$. Here we can see that this is given in a form of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. So, here we can consider the value of $\theta $ as 2. So, now our question is to prove, ${{\sin }^{2}}2+{{\cos }^{2}}2=1$. For this we will use a right triangle. And then we will apply Pythagoras Theorem for proving this and we will also keep in mind that $\dfrac{P}{H}=\sin \theta $ and $\dfrac{B}{H}=\cos \theta $. Here P stands for perpendicular, H stands for hypotenuse and B stands for base. Now if we make a right triangle as follows,
Now, let angle A be $\theta $. We will apply the theorem of Pythagoras Theorem, that is, ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, where a is the value of perpendicular, b is the value of base and c is the value of hypotenuse. So, we will get it as,
$\begin{align}
& \text{perpendicula}{{\text{r}}^{2}}+\text{bas}{{\text{e}}^{2}}=\text{hypotenus}{{\text{e}}^{2}} \\
& \Rightarrow AB{{}^{2}}+B{{C}^{2}}=A{{C}^{2}} \\
\end{align}$
Dividing the above equation by $A{{C}^{2}}$, we will get,
$\begin{align}
& \dfrac{A{{B}^{2}}+B{{C}^{2}}}{A{{C}^{2}}}=\dfrac{A{{C}^{2}}}{A{{C}^{2}}} \\
& \Rightarrow \dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1 \\
\end{align}$
We know that,
$\dfrac{P}{H}=\sin \theta $
$\dfrac{B}{H}=\cos \theta $
Now in the equation, $\dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1$,
$\Rightarrow \dfrac{AB}{AC}=\sin \theta ,\dfrac{BC}{AC}=\cos \theta $
Thus we get the conclusion that,
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
And as we have assumed that $\theta =2$,
So, ${{\sin }^{2}}2+{{\cos }^{2}}2=1$.
Hence it is proved.
Note: Pythagoras Theorem, that is, $\text{perpendicula}{{\text{r}}^{2}}+\text{bas}{{\text{e}}^{2}}=\text{hypotenus}{{\text{e}}^{2}}$ is used in this question is the most basic theorem in mathematics and to be used in most questions like this with right angled triangles. Do not forget that, $\dfrac{P}{H}=\sin \theta ,\dfrac{B}{H}=\cos \theta ,\dfrac{P}{B}=\tan \theta $.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE