
Prove that $\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A$ .
Answer
593.7k+ views
- Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas like $\sin 2\theta =2\sin \theta \cos \theta $ , $\cos 2\theta +1=2{{\cos }^{2}}\theta $ and $1-\cos 2\theta =2{{\sin }^{2}}\theta $ for simplifying the term on the left-hand side. After that, we will easily prove the desired result.
Complete step-by-step solution -
Given:
We have to prove the following trigonometric equation:
$\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A$
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta .................\left( 1 \right) \\
& \cos 2\theta +1=2{{\cos }^{2}}\theta .................\left( 2 \right) \\
& 1-\cos 2\theta =2{{\sin }^{2}}\theta ...................\left( 3 \right) \\
& \dfrac{\cos \theta }{\sin \theta }=\cot \theta ............................\left( 4 \right) \\
\end{align}$
Now, we will use the above four formulas to simplify the term on the left-hand side.
On the left-hand side, we have $\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}$ .
Now, we will use the formula from the equation (1) to write $\sin 2A=2\sin A\cos A$ in the numerator and denominator of the term $\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}$ . Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+1+\cos 2A}{2\sin A\cos A+1-\cos 2A} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $1+\cos 2A=2{{\cos }^{2}}A$ and formula from the equation (3) to write $1-\cos 2A=2{{\sin }^{2}}A$ in the above equation. Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+1+\cos 2A}{2\sin A\cos A+1-\cos 2A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A} \\
\end{align}$
Now, we will take $2\cos A$ common from the numerator, and $2\sin A$ common from the denominator of the term $\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A}$ in the above equation. Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\cos A\left( \sin A+\cos A \right)}{2\sin A\left( \cos A+\sin A \right)} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A\left( \sin A+\cos A \right)}{\sin A\left( \sin A+\cos A \right)} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A}{\sin A} \\
\end{align}$
Now, we will use the formula from the equation (4) to write $\dfrac{\cos A}{\sin A}=\cot A$ in the above equation. Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A}{\sin A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A \\
\end{align}$
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, $\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A$ .
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result. After that, we should apply double angle trigonometric formulas of $\sin 2\theta $ and $\cos 2\theta $ correctly. Moreover, while simplifying we should be aware of the result and try to solve accurately without any calculation mistakes, so that we can prove the desired result easily.
Complete step-by-step solution -
Given:
We have to prove the following trigonometric equation:
$\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A$
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta .................\left( 1 \right) \\
& \cos 2\theta +1=2{{\cos }^{2}}\theta .................\left( 2 \right) \\
& 1-\cos 2\theta =2{{\sin }^{2}}\theta ...................\left( 3 \right) \\
& \dfrac{\cos \theta }{\sin \theta }=\cot \theta ............................\left( 4 \right) \\
\end{align}$
Now, we will use the above four formulas to simplify the term on the left-hand side.
On the left-hand side, we have $\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}$ .
Now, we will use the formula from the equation (1) to write $\sin 2A=2\sin A\cos A$ in the numerator and denominator of the term $\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}$ . Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+1+\cos 2A}{2\sin A\cos A+1-\cos 2A} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $1+\cos 2A=2{{\cos }^{2}}A$ and formula from the equation (3) to write $1-\cos 2A=2{{\sin }^{2}}A$ in the above equation. Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+1+\cos 2A}{2\sin A\cos A+1-\cos 2A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A} \\
\end{align}$
Now, we will take $2\cos A$ common from the numerator, and $2\sin A$ common from the denominator of the term $\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A}$ in the above equation. Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\cos A\left( \sin A+\cos A \right)}{2\sin A\left( \cos A+\sin A \right)} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A\left( \sin A+\cos A \right)}{\sin A\left( \sin A+\cos A \right)} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A}{\sin A} \\
\end{align}$
Now, we will use the formula from the equation (4) to write $\dfrac{\cos A}{\sin A}=\cot A$ in the above equation. Then,
$\begin{align}
& \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A}{\sin A} \\
& \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A \\
\end{align}$
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, $\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A$ .
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result. After that, we should apply double angle trigonometric formulas of $\sin 2\theta $ and $\cos 2\theta $ correctly. Moreover, while simplifying we should be aware of the result and try to solve accurately without any calculation mistakes, so that we can prove the desired result easily.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

