
$ P $ and $ Q $ are respectively the midpoint of sides $ AB $ and $ BC $ of a triangle $ ABC $ and $ R $ is the midpoint of $ AP $ , show that
I. $ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ARC} \right) $
II. $ {\rm{ar}}\left( {RQC} \right) = \dfrac{3}{8}{\rm{ar}}\left( {ABC} \right) $
III. $ {\rm{ar}}\left( {PBQ} \right) = {\rm{ar}}\left( {ARC} \right) $
Answer
574.8k+ views
Hint: In the first proof since $ P $ is the midpoint of $ AB $ so $ {\rm{ar}}\left( {APC} \right) = {\rm{ar}}\left( {BPC} \right) $ . Get $ {\rm{ar}}\left( {PRQ} \right) $ in term of $ {\rm{ar}}\left( {ABC} \right) $ and $ {\rm{ar}}\left( {ARC} \right) $ in terms of $ {\rm{ar}}\left( {ABC} \right) $ . For the second proof take $ {\rm{ar}}\left( {RQC} \right) $ as sum of $ {\rm{ar}}\left( {PRQ} \right) $ and $ {\rm{ar}}\left( {BPQ} \right) $ . For the third proof write $ {\rm{ar}}\left( {PBQ} \right) $ in terms of $ {\rm{ar}}\left( {ABC} \right) $ and $ {\rm{ar}}\left( {ARC} \right) $ in terms of $ {\rm{ar}}\left( {ABC} \right) $ and then equate them.
Complete step-by-step answer:
$ P $ and $ Q $ are respectively the midpoints of sides $ AB $ and $ BC $ of a triangle $ ABC $ and $ R $ is the midpoint of $ AP $ .
The following is the schematic diagram of the triangle ABC.
(i)
To prove that
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ARC} \right) $
We know that the area of triangles are equal that is $ {\rm{ar}}\left( {PRQ} \right) = {\rm{ar}}\left( {BPQ} \right) $ . This is because of the property of a median in which median divides it into two triangles of equal area.
Since, $ R $ is midpoint in line AP then form the property of median the area $ {\rm{ar}}\left( {ARQ} \right) $ is equal to half times $ {\rm{ar}}\left( {APQ} \right) $ .
Midpoint divides the triangles in two equal parts.
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $
To find the relation for $ {\rm{ar}}\left( {ARC} \right) $ , Since, we know that $ R $ is the midpoint of $ AP $ we have,
$ {\rm{ar}}\left( {ARC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {APC} \right) $ …….(1)
And it is known that $ P $ is the midpoint of $ AB $ we have,
$ {\rm{ar}}\left( {APC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $ ……(2)
On substituting the value from equation (2) in (1) we get,
$ \begin{array}{c}
{\rm{ar}}\left( {ARC} \right) = \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right)\\
\dfrac{1}{2} \times {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{4} \times {\rm{ar}}\left( {ARC} \right)
\end{array} $
On multiplying with $ 2 $ on both sides we get,
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2} \times {\rm{ar}}\left( {ARC} \right) $
Hence, it is proved that $ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2} \times {\rm{ar}}\left( {ARC} \right) $ .
(ii)
To prove that
$ {\rm{ar}}\left( {RQC} \right) = \dfrac{3}{8}{\rm{ar}}\left( {ABC} \right) $
We know that the area of triangles are equal that is $ {\rm{ar}}\left( {RQC} \right) = {\rm{ar}}\left( {RBQ} \right) $ . This is because of the property of a median in which median divides it into two triangles of equal area.
Also, medium of a $ A $ divides it into triangles of equal areas is equal to $ {\rm{ar}}\left( {PRQ} \right) + {\rm{ar}}\left( {BPQ} \right) $ .
Since, $ Q $ is the midpoint $ ABC $ so $ {\rm{ar}}\left( {ABQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {BPQ} \right) $ and since $ P $ is the midpoint of $ BPQ $ so $ {\rm{ar}}\left( {AQP} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABQ} \right) $ .
Also, $ R $ is the midpoint of $ ABQ $ so $ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $ .
On combining all the equations, we have,
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{8}{\rm{ar}}\left( {ABC} \right) $
$ \begin{array}{c}
{\rm{ar}}\left( {RQC} \right) = {\rm{ar}}\left( {PRQ} \right) + {\rm{ar}}\left( {BPQ} \right)\\
= \dfrac{1}{8}{\rm{ar}}\left( {ABC} \right) + \dfrac{1}{2}{\rm{ar}}\left( {PBC} \right)\\
= \dfrac{1}{8}{\rm{ar}}\left( {ABC} \right) + \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right)\\
= \dfrac{3}{8}{\rm{ar}}\left( {ABC} \right)
\end{array} $
Hence, proved that $ {\rm{ar}}\left( {RQC} \right) = \dfrac{3}{8}{\rm{ar}}\left( {ABC} \right) $ .
(iii)
To prove that
$ {\rm{ar}}\left( {PBQ} \right) = {\rm{ar}}\left( {ARC} \right) $
Since, $ Q $ is the midpoint of $ ABC $ , so we have,
$ {\rm{ar}}\left( {ABQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $
Also, $ P $ is the midpoint of $ ABC $ , so we get,
$ {\rm{ar}}\left( {PBQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABQ} \right) $
On equating the above equation, we get,
$ {\rm{ar}}\left( {PBQ} \right) = \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right) $ …….(3)
Since, we know $ P $ is the midpoint of $ ABC $ and $ R $ is the midpoint of $ APC $ , so we get,
$ {\rm{ar}}\left( {APC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $
$ {\rm{ar}}\left( {ARC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {APC} \right) $
Hence, on combining above both equations, we get,
$ {\rm{ar}}\left( {ARC} \right) = \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right) $ ……(4)
We will combine equations (3) and (4), we get,
$ {\rm{ar}}\left( {PBQ} \right) = {\rm{ar}}\left( {ARC} \right) $
Note: Make sure that when the point is midpoint on a line then we can say that area can be divided into two equal parts. If it is not a mid-point area cannot be divided into two triangles with equal areas.
Complete step-by-step answer:
$ P $ and $ Q $ are respectively the midpoints of sides $ AB $ and $ BC $ of a triangle $ ABC $ and $ R $ is the midpoint of $ AP $ .
The following is the schematic diagram of the triangle ABC.
(i)
To prove that
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ARC} \right) $
We know that the area of triangles are equal that is $ {\rm{ar}}\left( {PRQ} \right) = {\rm{ar}}\left( {BPQ} \right) $ . This is because of the property of a median in which median divides it into two triangles of equal area.
Since, $ R $ is midpoint in line AP then form the property of median the area $ {\rm{ar}}\left( {ARQ} \right) $ is equal to half times $ {\rm{ar}}\left( {APQ} \right) $ .
Midpoint divides the triangles in two equal parts.
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $
To find the relation for $ {\rm{ar}}\left( {ARC} \right) $ , Since, we know that $ R $ is the midpoint of $ AP $ we have,
$ {\rm{ar}}\left( {ARC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {APC} \right) $ …….(1)
And it is known that $ P $ is the midpoint of $ AB $ we have,
$ {\rm{ar}}\left( {APC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $ ……(2)
On substituting the value from equation (2) in (1) we get,
$ \begin{array}{c}
{\rm{ar}}\left( {ARC} \right) = \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right)\\
\dfrac{1}{2} \times {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{4} \times {\rm{ar}}\left( {ARC} \right)
\end{array} $
On multiplying with $ 2 $ on both sides we get,
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2} \times {\rm{ar}}\left( {ARC} \right) $
Hence, it is proved that $ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2} \times {\rm{ar}}\left( {ARC} \right) $ .
(ii)
To prove that
$ {\rm{ar}}\left( {RQC} \right) = \dfrac{3}{8}{\rm{ar}}\left( {ABC} \right) $
We know that the area of triangles are equal that is $ {\rm{ar}}\left( {RQC} \right) = {\rm{ar}}\left( {RBQ} \right) $ . This is because of the property of a median in which median divides it into two triangles of equal area.
Also, medium of a $ A $ divides it into triangles of equal areas is equal to $ {\rm{ar}}\left( {PRQ} \right) + {\rm{ar}}\left( {BPQ} \right) $ .
Since, $ Q $ is the midpoint $ ABC $ so $ {\rm{ar}}\left( {ABQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {BPQ} \right) $ and since $ P $ is the midpoint of $ BPQ $ so $ {\rm{ar}}\left( {AQP} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABQ} \right) $ .
Also, $ R $ is the midpoint of $ ABQ $ so $ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $ .
On combining all the equations, we have,
$ {\rm{ar}}\left( {PRQ} \right) = \dfrac{1}{8}{\rm{ar}}\left( {ABC} \right) $
$ \begin{array}{c}
{\rm{ar}}\left( {RQC} \right) = {\rm{ar}}\left( {PRQ} \right) + {\rm{ar}}\left( {BPQ} \right)\\
= \dfrac{1}{8}{\rm{ar}}\left( {ABC} \right) + \dfrac{1}{2}{\rm{ar}}\left( {PBC} \right)\\
= \dfrac{1}{8}{\rm{ar}}\left( {ABC} \right) + \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right)\\
= \dfrac{3}{8}{\rm{ar}}\left( {ABC} \right)
\end{array} $
Hence, proved that $ {\rm{ar}}\left( {RQC} \right) = \dfrac{3}{8}{\rm{ar}}\left( {ABC} \right) $ .
(iii)
To prove that
$ {\rm{ar}}\left( {PBQ} \right) = {\rm{ar}}\left( {ARC} \right) $
Since, $ Q $ is the midpoint of $ ABC $ , so we have,
$ {\rm{ar}}\left( {ABQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $
Also, $ P $ is the midpoint of $ ABC $ , so we get,
$ {\rm{ar}}\left( {PBQ} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABQ} \right) $
On equating the above equation, we get,
$ {\rm{ar}}\left( {PBQ} \right) = \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right) $ …….(3)
Since, we know $ P $ is the midpoint of $ ABC $ and $ R $ is the midpoint of $ APC $ , so we get,
$ {\rm{ar}}\left( {APC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {ABC} \right) $
$ {\rm{ar}}\left( {ARC} \right) = \dfrac{1}{2}{\rm{ar}}\left( {APC} \right) $
Hence, on combining above both equations, we get,
$ {\rm{ar}}\left( {ARC} \right) = \dfrac{1}{4}{\rm{ar}}\left( {ABC} \right) $ ……(4)
We will combine equations (3) and (4), we get,
$ {\rm{ar}}\left( {PBQ} \right) = {\rm{ar}}\left( {ARC} \right) $
Note: Make sure that when the point is midpoint on a line then we can say that area can be divided into two equal parts. If it is not a mid-point area cannot be divided into two triangles with equal areas.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE


