
one mole each \[Fe{C_2}{O_4}\,\], \[F{e_2}{({C_2}{O_4})_3}\],\[\,\,FeS{O_4}\] ,\[F{e_2}{(S{O_4})_3}\], will react with how many moles of acidified $KMn{O_4}$?
(A) $1$
(B) $2$
(C) $3$
(D) $5$
Answer
562.8k+ views
Hint:To find the total number of moles of $KMn{O_4}$ we have to calculate the n factor value of $KMn{O_4}$ by comparing the number of gram equivalent of Oxidising agent and the number of gram equivalent of reducing agent.
Complete solution:
Now we will compare the number of gram equivalent of oxidizing agent which is $KMn{O_4}$ and the number of gram equivalent of reducing agents which are \[Fe{C_2}{O_4}\,\], \[F{e_2}{({C_2}{O_4})_3}\],\[\,\,FeS{O_4}\] ,\[F{e_2}{(S{O_4})_3}\]. Number of gram equivalent is given as:
\[Mole{s_{O.A.}}\,\, \times \,\,n{{ }}facto{r_{O.A.}}\; = Mole{s_{R.A.}}{{ }} \times n{{ }}facto{r_{R.A.}}\]\[{M_{KMn{o_4}}} \times \,\,n.{f_{KMn{o_4}}} = ({M_{Fe{C_2}{O_4}\,}} \times \,\,n.{f_{Fe{C_2}{O_4}\,}})\, + ({M_{F{e_2}{{({C_2}{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{({C_2}{O_4})}_3}\,}})\, + ({M_{FeS{O_4}\,}} \times \,\,n.{f_{FeS{O_4}\,}}) + ({M_{\,F{e_2}{{(S{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{(S{O_4})}_3}\,}})\]Now we will calculate the n factor of $KMn{O_4}$. In acidic medium the reaction of $KMn{O_4}$ reduces from $MnO_4^ - $ to $M{n^{2 + }}$ the reaction for the same is:
$MnO_4^ - \, + \,\,8{H^ + } + 5{e^ - } \to M{n^{2 + }} + 4{H_2}O$
n Factor for $KMn{O_4}$$ = 5$, Now we will calculate the n factor of \[Fe{C_2}{O_4}\,\].
In \[Fe{C_2}{O_4}\,\]Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$Oxidation state. The reaction will be:
\[Fe{C_2}{O_4}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,C{O^{2 + }} + M{n^{2 + }}\]
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$ and ${C_2}O_4^{2 - } \to 2C{O_2} + 2e$ so n Factor for \[Fe{C_2}{O_4}\,\]$ = 3$
Now we will calculate the n factor of \[F{e_2}{({C_2}{O_4})_3}\]. In \[F{e_2}{({C_2}{O_4})_3}\] Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$ Oxidation state. The reaction will be:
\[F{e_2}{({C_2}{O_4})_3}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,C{O^{2 + }} + M{n^{2 + }}\]
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and ${C_2}O_4^{2 - } \to 2C{O_2} + 2e$ and there are two iron atoms so n Factor for \[F{e_2}{({C_2}{O_4})_3}\]$ = 6$.
Now we will calculate the n factor of \[\,\,FeS{O_4}\]. In \[\,\,FeS{O_4}\]Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$Oxidation state. The reaction will be:
\[\,\,FeS{O_4}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,S{O_4}^{2 - } + M{n^{2 + }}\]
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and so n Factor for\[\,\,FeS{O_4}\]$ = 1$
\[F{e_2}{(S{O_4})_3}\] do not oxidise. So its n factor will be zero.
Now putting these values in the gram equivalent equation then we will get:
\[{M_{KMn{o_4}}} \times \,\,n.{f_{KMn{o_4}}} = ({M_{Fe{C_2}{O_4}\,}} \times \,\,n.{f_{Fe{C_2}{O_4}\,}})\, + ({M_{F{e_2}{{({C_2}{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{({C_2}{O_4})}_3}\,}})\, + ({M_{FeS{O_4}\,}} \times \,\,n.{f_{FeS{O_4}\,}}) + ({M_{\,F{e_2}{{(S{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{(S{O_4})}_3}\,}})\]
\[{M_{KMn{o_4}}} \times \,\,5 = (1 \times \,\,3)\, + (1 \times \,\,6)\, + (1 \times \,\,1) + (1 \times \,\,0)\]
\[{M_{KMn{o_4}}} = \dfrac{{10}}{5} = 2\]
Hence, the total number of $KMn{O_4}$ moles required is $2$.
Thus, the correct option is (B) .
Note:$KMn{O_4}$ or Potassium permanganate is an organic compound. It is used as an oxidizing agent. It is purple-black crystalline solid in colour. It reduces itself and oxidizes the other compounds. It is soluble in water and is also used for cleaning of wounds.
Complete solution:
Now we will compare the number of gram equivalent of oxidizing agent which is $KMn{O_4}$ and the number of gram equivalent of reducing agents which are \[Fe{C_2}{O_4}\,\], \[F{e_2}{({C_2}{O_4})_3}\],\[\,\,FeS{O_4}\] ,\[F{e_2}{(S{O_4})_3}\]. Number of gram equivalent is given as:
\[Mole{s_{O.A.}}\,\, \times \,\,n{{ }}facto{r_{O.A.}}\; = Mole{s_{R.A.}}{{ }} \times n{{ }}facto{r_{R.A.}}\]\[{M_{KMn{o_4}}} \times \,\,n.{f_{KMn{o_4}}} = ({M_{Fe{C_2}{O_4}\,}} \times \,\,n.{f_{Fe{C_2}{O_4}\,}})\, + ({M_{F{e_2}{{({C_2}{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{({C_2}{O_4})}_3}\,}})\, + ({M_{FeS{O_4}\,}} \times \,\,n.{f_{FeS{O_4}\,}}) + ({M_{\,F{e_2}{{(S{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{(S{O_4})}_3}\,}})\]Now we will calculate the n factor of $KMn{O_4}$. In acidic medium the reaction of $KMn{O_4}$ reduces from $MnO_4^ - $ to $M{n^{2 + }}$ the reaction for the same is:
$MnO_4^ - \, + \,\,8{H^ + } + 5{e^ - } \to M{n^{2 + }} + 4{H_2}O$
n Factor for $KMn{O_4}$$ = 5$, Now we will calculate the n factor of \[Fe{C_2}{O_4}\,\].
In \[Fe{C_2}{O_4}\,\]Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$Oxidation state. The reaction will be:
\[Fe{C_2}{O_4}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,C{O^{2 + }} + M{n^{2 + }}\]
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$ and ${C_2}O_4^{2 - } \to 2C{O_2} + 2e$ so n Factor for \[Fe{C_2}{O_4}\,\]$ = 3$
Now we will calculate the n factor of \[F{e_2}{({C_2}{O_4})_3}\]. In \[F{e_2}{({C_2}{O_4})_3}\] Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$ Oxidation state. The reaction will be:
\[F{e_2}{({C_2}{O_4})_3}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,C{O^{2 + }} + M{n^{2 + }}\]
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and ${C_2}O_4^{2 - } \to 2C{O_2} + 2e$ and there are two iron atoms so n Factor for \[F{e_2}{({C_2}{O_4})_3}\]$ = 6$.
Now we will calculate the n factor of \[\,\,FeS{O_4}\]. In \[\,\,FeS{O_4}\]Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$Oxidation state. The reaction will be:
\[\,\,FeS{O_4}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,S{O_4}^{2 - } + M{n^{2 + }}\]
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and so n Factor for\[\,\,FeS{O_4}\]$ = 1$
\[F{e_2}{(S{O_4})_3}\] do not oxidise. So its n factor will be zero.
Now putting these values in the gram equivalent equation then we will get:
\[{M_{KMn{o_4}}} \times \,\,n.{f_{KMn{o_4}}} = ({M_{Fe{C_2}{O_4}\,}} \times \,\,n.{f_{Fe{C_2}{O_4}\,}})\, + ({M_{F{e_2}{{({C_2}{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{({C_2}{O_4})}_3}\,}})\, + ({M_{FeS{O_4}\,}} \times \,\,n.{f_{FeS{O_4}\,}}) + ({M_{\,F{e_2}{{(S{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{(S{O_4})}_3}\,}})\]
\[{M_{KMn{o_4}}} \times \,\,5 = (1 \times \,\,3)\, + (1 \times \,\,6)\, + (1 \times \,\,1) + (1 \times \,\,0)\]
\[{M_{KMn{o_4}}} = \dfrac{{10}}{5} = 2\]
Hence, the total number of $KMn{O_4}$ moles required is $2$.
Thus, the correct option is (B) .
Note:$KMn{O_4}$ or Potassium permanganate is an organic compound. It is used as an oxidizing agent. It is purple-black crystalline solid in colour. It reduces itself and oxidizes the other compounds. It is soluble in water and is also used for cleaning of wounds.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

