Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Name the type of quadrilateral formed if any, by the following points and give reasons for your answer.
i) (-1, -2), (1, 0), (-1, 2), (-3, 0)
ii) (-3, 5), (3, 1), (0, 3), (-1, -4)
iii) (4, 5), (7, 6), (4, 3), (1, 2)

Answer
VerifiedVerified
528.6k+ views
3 likes
like imagedislike image
Hint: In this question, we will use the basic concept of distance formula between two consecutive points. If all the lengths are equal, then we will find the lengths of the alternate points because it can be a square or a rhombus. And if two alternate sides are equal in length, then there are possibilities that the quadrilateral may be either rectangle or parallelogram and so the diagonal lengths are calculated then.

Complete step-by-step answer:

In this question, we will use the basic concept of distance formula, that is distance between (x1,y1) and (x2,y2)=(x2x1)2+(y2y1)2. Let us consider each of the options given in the question one by one.
i) (-1, -2), (1, 0), (-1, 2), (-3, 0)
Let A=(1,2),B=(1,0),C=(1,2) and D=(3,0). So, we will now calculate AB,BC,CD and DA. After that we will calculate the length ofAC and BD, then decide the shape of the quadrilateral. So, we can write the distance between A and B=AB. So, we get,
AB=[1(1)]2+[0(2)]2AB=22+22AB=4+4AB=22(i)
Similarly, for BC, we get,
BC=(11)2+(20)2BC=(2)2+22BC=4+4BC=22(ii)
And, for CD, we get,
CD=[3(2)]2+[0(2)]2CD=(2)2+(2)2CD=4+4CD=22(iii)
And similarly, for DA, we get,
DA=[1(3)]2+[(2)0]2DA=22+(2)2DA=4+4DA=22(iv)
So, here we can see from equations (i), (ii), (iii) and (iv) that AB=BC=CD=DA. So, we can say that the quadrilateral is either a square or a rhombus. Now, we will calculate the length of its diagonals, that is, AC and BD. So, by calculating the length for AC, we get,
AC=[1(1)]2+[2(2)]2AC=02+42AC=42AC=4
Similarly, we will calculate the length for BD and we get,
BD=[3(+1)]2+[00]2BD=42+0BD=42BD=4
We can see that the diagonalsAC=BD and earlier we had observed that AB=BC=CD=DA.
Therefore, we can say that the quadrilateral formed by these set of points is nothing but a square.
ii) (-3, 5), (3, 1), (0, 3), (-1, -4)
Let A=(3,5),B=(3,1),C=(0,3) and D=(1,4). So, we will now calculate AB,BC,CD and DA. After that we will calculate AC and BD, and with the lengths of the sides and the diagonals, we will decide the shape of the quadrilateral that is formed. So, we can write the distance between A and B=AB. So, we get,
AB=[3(3)]2+[15]2AB=62+(4)2AB=36+16AB=52AB=213(i)
Similarly, for BC, we get,
BC=(03)2+(31)2BC=(3)2+22BC=9+4BC=13(ii)
And, for CD, we get,
CD=(10)2+(43)2CD=(1)2+(7)2CD=1+49CD=50(iii)
And similarly, for DA, we get,
DA=[3(1)]2+[5(4)]2DA=(2)2+(9)2DA=4+81DA=85(iv)
In this set of points, we can see from equations (i), (ii), (iii) and (iv) that ABBCCDDA.
Therefore, the quadrilateral that is formed by these set of points is not a uniform quadrilateral.
iii) (4, 5), (7, 6), (4, 3), (1, 2)
Let A=(4,5),B=(7,6),C=(4,3) and D=(1,2). So, we will now calculate the lengths of AB,BC,CD and DA. After that, if needed, we will calculate the lengths ofAC and BD, and decide the shape of the quadrilateral that is formed. So, we can write the distance between A and B=AB. So, we get,
AB=(74)2+(65)2AB=32+12AB=9+1AB=10(i)
Similarly, for BC, we get,
BC=(47)2+(36)2BC=(3)2+(3)2BC=9+9BC=32(ii)
And, for CD, we get,
CD=(14)2+(23)2CD=(3)2+(1)2CD=9+1CD=10(iii)
And similarly, for DA, we get,
DA=(41)2+(52)2DA=32+32DA=9+9DA=32(iv)
Here, we can observe from equations (i), (ii), (iii) and (iv) that AB=CD and BC=DA. So, we can say that the quadrilateral is either a rectangle or a parallelogram. So, we will calculate the length of the diagonals, that is AC and BD. So, by calculating the length for AC, we get,
AC=(44)2+(35)2AC=02+(2)2AC=4AC=2
Similarly, we will calculate the length for BD and we get,
BD=(17)2+(26)2BD=(6)2+(4)2BD=36+16BD=52
WE can see here that ACBD and earlier we had found out that AB=CD and BC=DA. Therefore, the quadrilateral formed by these set of points is a parallelogram.

Note: In this question, we have the most basic coordinate geometry formula, that is distance formula, which is for two points, (x1,y1) and (x2,y2)=(x2x1)2+(y2y1)2. The possible mistakes one can make in this question is by not calculating the length of the diagonals and directly predicting the shape of the quadrilateral. One should also be careful with the numerical signs while doing the calculations.