
Multiply the binomials
(i) $(2x + 5)$ and $(4x - 3)$
(ii) $(y - 8)$and $(3y - 4)$
(iii) $(2.5l - 0.5m)$ and $(2.5l + 0.5m)$
(iv) $(a + 3b)$ and $(x + 5)$
(v) $(2pq + 3{q^2})$ and $(3pq - 2{q^2})$
(vi) $(\dfrac{3}{4}{a^2} + 3{b^2})$ and $({a^2} - \dfrac{2}{3}{b^2})$
Answer
578.4k+ views
Hint:Multiply each term of the first binomial with each term of the second binomial to get a polynomial of 4 terms. Combine the like terms and simplify the polynomial to get the final answer.
Complete step-by -step solution:
We are given eight pairs of binomials.
We need to find the product of binomials in each of these pairs.
(i) Given binomials $(2x + 5)$ and $(4x - 3)$
Consider their product$(2x + 5)(4x - 3)$
We will first multiply each term of the binomial$(2x + 5)$with each term of the binomial$(4x - 3)$.
Thus, we have$(2x + 5)(4x - 3) = 2x(4x - 3) + 5(4x - 3)$
Here we will multiply the term outside a bracket with each of the terms inside that bracket to obtain a polynomial with 4 terms.
This gives us$(2x + 5)(4x - 3) = (2x \times 4x - 2x \times 3) + (5 \times 4x - 5 \times 3) = (8{x^2} - 6x) + (20x - 15)$
Now we will combine the like terms (the underlined part) to simplify the equation and get the final answer.
\[(2x + 5)(4x - 3) = 8{x^2}\underline { - 6x + 20x} - 15 = 8{x^2} + 14x - 15\]
Hence the product of$(2x + 5)$ and $(4x - 3)$is $8{x^2} + 14x - 15$.
We will be repeating the above method for the next 5 pairs of binomials.
(ii) $(y - 8)$and $(3y - 4)$
\[
(y - 8)(3y - 4) = y(3y - 4) - 8(3y - 4) \\
= (y \times 3y - y \times 4) - (8 \times 3y - 8 \times 4) \\
= (3{y^2} - 4y) - (24y - 32) \\
= 3{y^2}\underline { - 4y - 24y} + 32 \\
= 3{y^2} - 28y + 32 \\
\]
Hence the product of$(y - 8)$and $(3y - 4)$ is \[3{y^2} - 28y + 32\].
(iii) $(2.5l - 0.5m)$ and $(2.5l + 0.5m)$
$
(2.5l - 0.5m)(2.5l + 0.5m) = 2.5l(2.5l + 0.5m) - 0.5m(2.5l + 0.5m) \\
= (2.5l \times 2.5l + 2.5l \times 0.5m) - (0.5m \times 2.5l + 0.5m \times 0.5m) \\
= (6.25{l^2} + 1.25lm) - (1.25lm + 0.25{m^2}) \\
= 6.25{l^2}\underline { + 1.25lm - 1.25lm} - 0.25{m^2} \\
= 6.25{l^2} - 0.25{m^2} \\
$
Hence the product of $(2.5l - 0.5m)$ and $(2.5l + 0.5m)$ is $6.25{l^2} - 0.25{m^2}$.
(iv) $(a + 3b)$ and $(x + 5)$
$
(a + 3b)(x + 5) = a(x + 5) + 3b(x + 5) \\
= (a \times x + a \times 5) + (3b \times x + 3b \times 5) \\
= (ax + 5a) + (3bx + 15b) \\
= ax + 5a + 3bx + 15b \\
$
Hence the product of $(a + 3b)$ and $(x + 5)$ is $ax + 5a + 3bx + 15b$.
(v) $(2pq + 3{q^2})$ and $(3pq - 2{q^2})$
$
(2pq + 3{q^2})(3pq - 2{q^2}) = 2pq(3pq - 2{q^2}) + 3{q^2}(3pq - 2{q^2}) \\
= (2pq \times 3pq - 2pq \times 2{q^2}) + (3{q^2} \times 3pq - 3{q^2} \times 2{q^2}) \\
= (6{p^2}{q^2} - 4p{q^3}) + (9p{q^3} - 6{q^4}) \\
= 6{p^2}{q^2}\underline { - 4p{q^3} + 9p{q^3}} - 6{q^4} \\
= 6{p^2}{q^2} + 5p{q^3} - 6{q^4} \\
$
Hence the product of $(2pq + 3{q^2})$ and $(3pq - 2{q^2})$ is $6{p^2}{q^2} + 5p{q^3} - 6{q^4}$.
(vi) $(\dfrac{3}{4}{a^2} + 3{b^2})$ and $({a^2} - \dfrac{2}{3}{b^2})$
$
(\dfrac{3}{4}{a^2} + 3{b^2})({a^2} - \dfrac{2}{3}{b^2}) = \dfrac{3}{4}{a^2}({a^2} - \dfrac{2}{3}{b^2}) + 3{b^2}({a^2} - \dfrac{2}{3}{b^2}) \\
= (\dfrac{3}{4}{a^2} \times {a^2} - \dfrac{3}{4}{a^2} \times \dfrac{2}{3}{b^2}) + (3{b^2} \times {a^2} - 3{b^2} \times \dfrac{2}{3}{b^2}) \\
= (\dfrac{3}{4}{a^4} - \dfrac{1}{2}{a^2}{b^2}) + (3{a^2}{b^2} - 2{b^4}) \\
= \dfrac{3}{4}{a^4}\underline { - \dfrac{1}{2}{a^2}{b^2} + 3{a^2}{b^2}} - 2{b^4} \\
= \dfrac{3}{4}{a^4} + \dfrac{5}{2}{a^2}{b^2} - 2{b^4} \\
$
Hence the product of $(\dfrac{3}{4}{a^2} + 3{b^2})$ and $({a^2} - \dfrac{2}{3}{b^2})$ is $\dfrac{3}{4}{a^4} + \dfrac{5}{2}{a^2}{b^2} - 2{b^4}$.
Note: A binomial is a polynomial with only two terms. It is an algebraic expression consisting of two monomials. That is, the two monomials in a binomial are separated by the operations of addition or subtraction.
Examples of binomials are $(2{x^2} + 5x)$ and $(4x - 3{x^3})$
Complete step-by -step solution:
We are given eight pairs of binomials.
We need to find the product of binomials in each of these pairs.
(i) Given binomials $(2x + 5)$ and $(4x - 3)$
Consider their product$(2x + 5)(4x - 3)$
We will first multiply each term of the binomial$(2x + 5)$with each term of the binomial$(4x - 3)$.
Thus, we have$(2x + 5)(4x - 3) = 2x(4x - 3) + 5(4x - 3)$
Here we will multiply the term outside a bracket with each of the terms inside that bracket to obtain a polynomial with 4 terms.
This gives us$(2x + 5)(4x - 3) = (2x \times 4x - 2x \times 3) + (5 \times 4x - 5 \times 3) = (8{x^2} - 6x) + (20x - 15)$
Now we will combine the like terms (the underlined part) to simplify the equation and get the final answer.
\[(2x + 5)(4x - 3) = 8{x^2}\underline { - 6x + 20x} - 15 = 8{x^2} + 14x - 15\]
Hence the product of$(2x + 5)$ and $(4x - 3)$is $8{x^2} + 14x - 15$.
We will be repeating the above method for the next 5 pairs of binomials.
(ii) $(y - 8)$and $(3y - 4)$
\[
(y - 8)(3y - 4) = y(3y - 4) - 8(3y - 4) \\
= (y \times 3y - y \times 4) - (8 \times 3y - 8 \times 4) \\
= (3{y^2} - 4y) - (24y - 32) \\
= 3{y^2}\underline { - 4y - 24y} + 32 \\
= 3{y^2} - 28y + 32 \\
\]
Hence the product of$(y - 8)$and $(3y - 4)$ is \[3{y^2} - 28y + 32\].
(iii) $(2.5l - 0.5m)$ and $(2.5l + 0.5m)$
$
(2.5l - 0.5m)(2.5l + 0.5m) = 2.5l(2.5l + 0.5m) - 0.5m(2.5l + 0.5m) \\
= (2.5l \times 2.5l + 2.5l \times 0.5m) - (0.5m \times 2.5l + 0.5m \times 0.5m) \\
= (6.25{l^2} + 1.25lm) - (1.25lm + 0.25{m^2}) \\
= 6.25{l^2}\underline { + 1.25lm - 1.25lm} - 0.25{m^2} \\
= 6.25{l^2} - 0.25{m^2} \\
$
Hence the product of $(2.5l - 0.5m)$ and $(2.5l + 0.5m)$ is $6.25{l^2} - 0.25{m^2}$.
(iv) $(a + 3b)$ and $(x + 5)$
$
(a + 3b)(x + 5) = a(x + 5) + 3b(x + 5) \\
= (a \times x + a \times 5) + (3b \times x + 3b \times 5) \\
= (ax + 5a) + (3bx + 15b) \\
= ax + 5a + 3bx + 15b \\
$
Hence the product of $(a + 3b)$ and $(x + 5)$ is $ax + 5a + 3bx + 15b$.
(v) $(2pq + 3{q^2})$ and $(3pq - 2{q^2})$
$
(2pq + 3{q^2})(3pq - 2{q^2}) = 2pq(3pq - 2{q^2}) + 3{q^2}(3pq - 2{q^2}) \\
= (2pq \times 3pq - 2pq \times 2{q^2}) + (3{q^2} \times 3pq - 3{q^2} \times 2{q^2}) \\
= (6{p^2}{q^2} - 4p{q^3}) + (9p{q^3} - 6{q^4}) \\
= 6{p^2}{q^2}\underline { - 4p{q^3} + 9p{q^3}} - 6{q^4} \\
= 6{p^2}{q^2} + 5p{q^3} - 6{q^4} \\
$
Hence the product of $(2pq + 3{q^2})$ and $(3pq - 2{q^2})$ is $6{p^2}{q^2} + 5p{q^3} - 6{q^4}$.
(vi) $(\dfrac{3}{4}{a^2} + 3{b^2})$ and $({a^2} - \dfrac{2}{3}{b^2})$
$
(\dfrac{3}{4}{a^2} + 3{b^2})({a^2} - \dfrac{2}{3}{b^2}) = \dfrac{3}{4}{a^2}({a^2} - \dfrac{2}{3}{b^2}) + 3{b^2}({a^2} - \dfrac{2}{3}{b^2}) \\
= (\dfrac{3}{4}{a^2} \times {a^2} - \dfrac{3}{4}{a^2} \times \dfrac{2}{3}{b^2}) + (3{b^2} \times {a^2} - 3{b^2} \times \dfrac{2}{3}{b^2}) \\
= (\dfrac{3}{4}{a^4} - \dfrac{1}{2}{a^2}{b^2}) + (3{a^2}{b^2} - 2{b^4}) \\
= \dfrac{3}{4}{a^4}\underline { - \dfrac{1}{2}{a^2}{b^2} + 3{a^2}{b^2}} - 2{b^4} \\
= \dfrac{3}{4}{a^4} + \dfrac{5}{2}{a^2}{b^2} - 2{b^4} \\
$
Hence the product of $(\dfrac{3}{4}{a^2} + 3{b^2})$ and $({a^2} - \dfrac{2}{3}{b^2})$ is $\dfrac{3}{4}{a^4} + \dfrac{5}{2}{a^2}{b^2} - 2{b^4}$.
Note: A binomial is a polynomial with only two terms. It is an algebraic expression consisting of two monomials. That is, the two monomials in a binomial are separated by the operations of addition or subtraction.
Examples of binomials are $(2{x^2} + 5x)$ and $(4x - 3{x^3})$
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

