Answer
Verified
456.9k+ views
Hint: To know the relation between activation energy, temperature and k, we need to use the Arrhenius equation. Taking antilog both sides we will have the required relation. On comparing the equation with the equation for straight lines we will get the value of activation energy.
Formula used:
\[{\text{k}} = {\text{A}}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}}\] here k is rate constant. \[{{\text{E}}_{\text{a}}}\] is activation energy, R is universal gas constant, T is temperature and e is exponential.
Complete step by step answer:
Arrhenius gave the equation in his activation theory which is as follow:
\[{\text{k}} = {\text{A}}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}}\]
We will multiply both the sides with natural log.
\[{\text{ln k}} = {\text{ln (A}}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}})\]
\[{\text{ln k}} = {\text{ln A}} + {\text{ln }}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}}\]
Exponential and natural log are reciprocal to each other and hence they will cancel out each other.
\[{\text{ln k}} = {\text{ln A}} - \dfrac{{{{\text{E}}_{\text{a}}}}}{{\text{R}}} \times \dfrac{1}{{\text{T}}}\]
The above equation represents the linear straight line equation, \[{\text{y}} = {\text{mx}} + {\text{c}}\]. When a graph is plotted against y and x then m is the slope and c is the intercept.
In our question y is k and x is \[\dfrac{1}{{\text{T}}}\] so the slope becomes \[\dfrac{{ - {{\text{E}}_{\text{a}}}}}{{\text{R}}}\]. The value of slope is given to us that is \[ - 10.7 \times {10^3}{\text{ k}}\].
We will compare both values. We will get,
\[\dfrac{{ - {{\text{E}}_{\text{a}}}}}{{\text{R}}} = - 10.7 \times {10^3}{\text{ k}}\]
\[ \Rightarrow {{\text{E}}_{\text{a}}} = 10.7 \times {10^3}{\text{ K }} \times {\text{ R}}\]
The value of R is constant that is \[8.314{\text{ }} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}\].
\[{{\text{E}}_{\text{a}}} = 10.7 \times {10^3}{\text{ K }} \times {\text{ }}8.314{\text{ }} \times {10^{ - 3}}{\text{kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}\]
\[ \Rightarrow {{\text{E}}_{\text{a}}} = 88.9{\text{kJ mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is C.
Note:
According to Arrhenius theory the activation energy is independent of temperature. In actual practice activation energy also varies with temperature. The higher the temperature, higher is the impact of temperature on activation energy. Activation energy is the amount of energy required by the reactant molecules to change into a product. k is the rate constant which is a constant at particular temperature. When temperature changes the value of the rate constant also changes.
Formula used:
\[{\text{k}} = {\text{A}}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}}\] here k is rate constant. \[{{\text{E}}_{\text{a}}}\] is activation energy, R is universal gas constant, T is temperature and e is exponential.
Complete step by step answer:
Arrhenius gave the equation in his activation theory which is as follow:
\[{\text{k}} = {\text{A}}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}}\]
We will multiply both the sides with natural log.
\[{\text{ln k}} = {\text{ln (A}}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}})\]
\[{\text{ln k}} = {\text{ln A}} + {\text{ln }}{{\text{e}}^{ - {{\text{E}}_{\text{a}}}{\text{/RT}}}}\]
Exponential and natural log are reciprocal to each other and hence they will cancel out each other.
\[{\text{ln k}} = {\text{ln A}} - \dfrac{{{{\text{E}}_{\text{a}}}}}{{\text{R}}} \times \dfrac{1}{{\text{T}}}\]
The above equation represents the linear straight line equation, \[{\text{y}} = {\text{mx}} + {\text{c}}\]. When a graph is plotted against y and x then m is the slope and c is the intercept.
In our question y is k and x is \[\dfrac{1}{{\text{T}}}\] so the slope becomes \[\dfrac{{ - {{\text{E}}_{\text{a}}}}}{{\text{R}}}\]. The value of slope is given to us that is \[ - 10.7 \times {10^3}{\text{ k}}\].
We will compare both values. We will get,
\[\dfrac{{ - {{\text{E}}_{\text{a}}}}}{{\text{R}}} = - 10.7 \times {10^3}{\text{ k}}\]
\[ \Rightarrow {{\text{E}}_{\text{a}}} = 10.7 \times {10^3}{\text{ K }} \times {\text{ R}}\]
The value of R is constant that is \[8.314{\text{ }} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}\].
\[{{\text{E}}_{\text{a}}} = 10.7 \times {10^3}{\text{ K }} \times {\text{ }}8.314{\text{ }} \times {10^{ - 3}}{\text{kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}\]
\[ \Rightarrow {{\text{E}}_{\text{a}}} = 88.9{\text{kJ mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is C.
Note:
According to Arrhenius theory the activation energy is independent of temperature. In actual practice activation energy also varies with temperature. The higher the temperature, higher is the impact of temperature on activation energy. Activation energy is the amount of energy required by the reactant molecules to change into a product. k is the rate constant which is a constant at particular temperature. When temperature changes the value of the rate constant also changes.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it