
lithium borohydride $\left( {{\text{LiB}}{{\text{H}}_4}} \right)$ crystallizes in an orthorhombic system with $4$molecules per unit cell. The unit cell dimensions are a=${\text{6}}{\text{.8}}{\buildrel _{\circ} \over {\mathrm{A}}}$, b=${\text{4}}{\text{.4}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$and c=${\text{7}}{\text{.2}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$. If the molar mass of the compound is $21.76\,{\text{g/mol}}$, the density (in ${\text{g}}\,{\text{c}}{{\text{m}}^{ - 3}}$ ) of the compound will be:
A. $0.67$
B.$0.33$
C.$1.72$
D. none of theses
Answer
553.8k+ views
Hint: We should know the density formula to determine the answer. Density depends upon the number of atoms, mass and volume of a unit cell. Volume of the unit cell depends upon the dimension of the unit cell. The product of all dimensions gives the volume of an orthorhombic unit cell.
Formula used: ${\text{d}}\,{\text{ = }}\dfrac{{{\text{z}}\,{\text{m}}}}{{{{\text{N}}_{\text{a}}}{\text{V}}}}$
Complete step-by-step answer:
The formula to calculate the density of cubic lattice is as follows:
$d\, = \dfrac{{z\,m}}{{{N_a}{\text{V}}}}$
Where,
$d$ is the density.
$z$ is the number of atoms in a unit cell.
$m$ is the molar mass of the metal.
${N_a}$ is the Avogadro number.
${\text{V}}$ is the volume of a unit cell.
We know that the volume of an orthorhombic unit cell is the product of the dimensions of the unit cell. The unit cell dimensions are a=${\text{6}}{\text{.8}}{\buildrel _{\circ} \over {\mathrm{A}}}$, b=${\text{4}}{\text{.4}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$and c=${\text{7}}{\text{.2}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$. So, volume of orthorhombic unit cell is,
${\Rightarrow \text{1}}\,{\buildrel _{\circ} \over {\mathrm{A}}}\, = \,{10^{ - 10}}{\text{m}}$
$\Rightarrow {\text{V}}\,\, = {\text{6}}{\text{.8}} \times {\text{1}}{{\text{0}}^{ - 10}} \times {\text{4}}{\text{.4}} \times {\text{1}}{{\text{0}}^{ - 10}} \times {\text{7}}{\text{.2}} \times {\text{1}}{{\text{0}}^{ - 10}}$
$\Rightarrow {\text{V}}\,\, = {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 30}}\,{{\text{m}}^{\text{3}}}$
We will convert volume from meter to centimetre as follows:
$\Rightarrow 1\,{{\text{m}}^{\text{3}}}\, = \,{\left( {100} \right)^3}\,{\text{c}}{{\text{m}}^3}$
$\Rightarrow {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 30}}\,{{\text{m}}^{\text{3}}} = {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}$
It is given that an orthorhombic system has $4$molecules per unit cell, so the number of atoms will be$4$.
Substitute $4$ for number of atoms, $21.76\,{\text{g/mol}}$ for molar mass of the compound, \[6.02 \times {10^{23}}\,{\text{mo}}{{\text{l}}^{ - 1}}\]for Avogadro number, ${\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}$for unit cell volume.
$\Rightarrow {\text{d}}\, = \dfrac{{4 \times 21.76\,{\text{g/mol}}}}{{6.02 \times {{10}^{23}}\,{\text{mo}}{{\text{l}}^{ - 1}}\, \times {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}}}$
$\Rightarrow {\text{d}}\,{\text{ = }}\dfrac{{{\text{87}}{\text{.04}}\,{\text{g}}}}{{{\text{129}}{\text{.7}}\,{\text{c}}{{\text{m}}^{\text{3}}}}}$
$\Rightarrow {\text{d}}\,{\text{ = 0}}{\text{.67}}\,\,{\text{g/c}}{{\text{m}}^{\text{3}}}$
So, the density of the compound is$0.67\,\,{\text{g/c}}{{\text{m}}^3}$.
Therefore, option (A) $0.67$ is the correct answer.
Note:The value of the number of atoms depends upon the type of lattice. For face-centred cubic lattice, the number of atoms is four whereas two for body-centred and one for simple cubic lattice. In orthorhombic unit cell all dimensions are unequal ${\text{a}} \ne {\text{b}} \ne {\text{c}}$but angel in all faces are equal to ${\text{9}}{{\text{0}}^{\text{o}}}$ $\alpha = \beta = \gamma \,{\text{ = }}\,\,{\text{9}}{{\text{0}}^{\text{o}}}$. In FCC and BCC are dimensions are equal so, the volume of the unit cell is given as ${a^3}$ where, a is the unit cell length so the formula of density for FCC and BCC is, $d\, = \dfrac{{z\,m}}{{{N_a}{a^3}}}$.
Formula used: ${\text{d}}\,{\text{ = }}\dfrac{{{\text{z}}\,{\text{m}}}}{{{{\text{N}}_{\text{a}}}{\text{V}}}}$
Complete step-by-step answer:
The formula to calculate the density of cubic lattice is as follows:
$d\, = \dfrac{{z\,m}}{{{N_a}{\text{V}}}}$
Where,
$d$ is the density.
$z$ is the number of atoms in a unit cell.
$m$ is the molar mass of the metal.
${N_a}$ is the Avogadro number.
${\text{V}}$ is the volume of a unit cell.
We know that the volume of an orthorhombic unit cell is the product of the dimensions of the unit cell. The unit cell dimensions are a=${\text{6}}{\text{.8}}{\buildrel _{\circ} \over {\mathrm{A}}}$, b=${\text{4}}{\text{.4}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$and c=${\text{7}}{\text{.2}}\,{\buildrel _{\circ} \over {\mathrm{A}}}$. So, volume of orthorhombic unit cell is,
${\Rightarrow \text{1}}\,{\buildrel _{\circ} \over {\mathrm{A}}}\, = \,{10^{ - 10}}{\text{m}}$
$\Rightarrow {\text{V}}\,\, = {\text{6}}{\text{.8}} \times {\text{1}}{{\text{0}}^{ - 10}} \times {\text{4}}{\text{.4}} \times {\text{1}}{{\text{0}}^{ - 10}} \times {\text{7}}{\text{.2}} \times {\text{1}}{{\text{0}}^{ - 10}}$
$\Rightarrow {\text{V}}\,\, = {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 30}}\,{{\text{m}}^{\text{3}}}$
We will convert volume from meter to centimetre as follows:
$\Rightarrow 1\,{{\text{m}}^{\text{3}}}\, = \,{\left( {100} \right)^3}\,{\text{c}}{{\text{m}}^3}$
$\Rightarrow {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 30}}\,{{\text{m}}^{\text{3}}} = {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}$
It is given that an orthorhombic system has $4$molecules per unit cell, so the number of atoms will be$4$.
Substitute $4$ for number of atoms, $21.76\,{\text{g/mol}}$ for molar mass of the compound, \[6.02 \times {10^{23}}\,{\text{mo}}{{\text{l}}^{ - 1}}\]for Avogadro number, ${\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}$for unit cell volume.
$\Rightarrow {\text{d}}\, = \dfrac{{4 \times 21.76\,{\text{g/mol}}}}{{6.02 \times {{10}^{23}}\,{\text{mo}}{{\text{l}}^{ - 1}}\, \times {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}}}$
$\Rightarrow {\text{d}}\,{\text{ = }}\dfrac{{{\text{87}}{\text{.04}}\,{\text{g}}}}{{{\text{129}}{\text{.7}}\,{\text{c}}{{\text{m}}^{\text{3}}}}}$
$\Rightarrow {\text{d}}\,{\text{ = 0}}{\text{.67}}\,\,{\text{g/c}}{{\text{m}}^{\text{3}}}$
So, the density of the compound is$0.67\,\,{\text{g/c}}{{\text{m}}^3}$.
Therefore, option (A) $0.67$ is the correct answer.
Note:The value of the number of atoms depends upon the type of lattice. For face-centred cubic lattice, the number of atoms is four whereas two for body-centred and one for simple cubic lattice. In orthorhombic unit cell all dimensions are unequal ${\text{a}} \ne {\text{b}} \ne {\text{c}}$but angel in all faces are equal to ${\text{9}}{{\text{0}}^{\text{o}}}$ $\alpha = \beta = \gamma \,{\text{ = }}\,\,{\text{9}}{{\text{0}}^{\text{o}}}$. In FCC and BCC are dimensions are equal so, the volume of the unit cell is given as ${a^3}$ where, a is the unit cell length so the formula of density for FCC and BCC is, $d\, = \dfrac{{z\,m}}{{{N_a}{a^3}}}$.
Recently Updated Pages
Draw graphs showing the variation of acceleration due class 11 physics CBSE

Bond order and magnetic moment of CO + is A 25 and class 11 chemistry CBSE

What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE

The Vant Hoff reaction isotherm is ADelta GRTlog eKp class 11 chemistry CBSE

Which of the following annulenes are aromatic A8Annulene class 11 chemistry CBSE

Founder of histology is A Huxley B Malpighii C Meyer class 11 biology CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

