Answer
Verified
392.1k+ views
Hint: In this type of question we have to use the concept of limit at infinity. We know that the idea of a limit is the basis of all calculus. Also we know that, a limit tells us the value that the given function approaches as that function’s input approaches to some number.
Complete step by step answer:
In the given question, we have to find the limit of \[{{e}^{x}}\] as \[x\] approaches to \[\infty \].
Hence, the function is \[f\left( x \right)={{e}^{x}}\] and limit as \[x\] approaches to \[\infty \] i.e. \[x \to \infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }f\left( x \right)=\displaystyle \lim_{x \to \infty }{{e}^{x}}\]
By applying the value of \[x\] as \[\infty \], we can write,
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}={{e}^{\infty }}\]
As we know that, the domain of \[{{e}^{x}}\] is the whole of \[\mathbb{R}\] and the range is \[\left( 0,\infty \right)\]. Also \[{{e}^{x}}\] is continuous function defined on the whole of \[\mathbb{R}\] and infinitely differentiable, with \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\].
Hence, the value of \[{{e}^{\infty }}=\infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}=\infty \]
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Note: In this type of question one of the students may state the result with the help of a graph also. The function \[f\left( x \right)={{e}^{x}}\] is an equation in which the variable is an exponent, and the graph is exponentially increasing with respect to \[x\]. Where, \[x\] is a real number and \[e\] is a positive constant. The graph for \[f\left( x \right)={{e}^{x}}\] is as follows:
From the above graph of \[{{e}^{x}}\] with respect to \[x\] we can clearly observe that as \[x\] approaches to \[\infty \], the function \[{{e}^{x}}\] also approaches to \[\infty \].
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Complete step by step answer:
In the given question, we have to find the limit of \[{{e}^{x}}\] as \[x\] approaches to \[\infty \].
Hence, the function is \[f\left( x \right)={{e}^{x}}\] and limit as \[x\] approaches to \[\infty \] i.e. \[x \to \infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }f\left( x \right)=\displaystyle \lim_{x \to \infty }{{e}^{x}}\]
By applying the value of \[x\] as \[\infty \], we can write,
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}={{e}^{\infty }}\]
As we know that, the domain of \[{{e}^{x}}\] is the whole of \[\mathbb{R}\] and the range is \[\left( 0,\infty \right)\]. Also \[{{e}^{x}}\] is continuous function defined on the whole of \[\mathbb{R}\] and infinitely differentiable, with \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\].
Hence, the value of \[{{e}^{\infty }}=\infty \]
\[\Rightarrow \displaystyle \lim_{x \to \infty }{{e}^{x}}=\infty \]
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Note: In this type of question one of the students may state the result with the help of a graph also. The function \[f\left( x \right)={{e}^{x}}\] is an equation in which the variable is an exponent, and the graph is exponentially increasing with respect to \[x\]. Where, \[x\] is a real number and \[e\] is a positive constant. The graph for \[f\left( x \right)={{e}^{x}}\] is as follows:
From the above graph of \[{{e}^{x}}\] with respect to \[x\] we can clearly observe that as \[x\] approaches to \[\infty \], the function \[{{e}^{x}}\] also approaches to \[\infty \].
Thus, the limit as \[x\] approaches \[\infty \] of \[{{e}^{x}}\] is \[\infty \].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it