
Let \[z = \cos \theta + i\sin \theta \]. Then the value of \[\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} \] at \[\theta {\text{ }} = {\text{ }}{2^0}\] is
$
{\text{A}}{\text{. }}\dfrac{1}{{\sin {2^0}}} \\
{\text{B}}{\text{. }}\dfrac{1}{{3\sin {2^0}}} \\
{\text{C}}{\text{. }}\dfrac{1}{{2\sin {2^0}}} \\
{\text{D}}{\text{. }}\dfrac{1}{{4\sin {2^0}}} \\
$
Answer
575.7k+ views
Hint: Write the complex number in exponential form and substitute it in the given summation and it will be seen that the term inside the summation will form a geometric progression so we will solve the series with the help of suitable formulas and hence we will solve the summation and find its final value.
Complete step-by-step answer:
We can represent a complex number as:
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\].
We need to find out the value of \[\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} \]. We can substitute the value of z as ${e^{i\theta }}$.
$
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( {{e^{i\theta }}} \right)}^{2m - 1}}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = Im\sum\limits_{m = 1}^{15} {\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
$
The series formed inside the summation is in G.P, whose first term can be found by substituting the initial value of m i.e. 1 and therefore,
$a = {e^{i\theta }}$
Now, to find the common ratio of this G.P, we have to take the ratio of second term and first term.
$r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{e^{i3\theta }}}}{{{e^{i\theta }}}} = {e^{i2\theta }}$
Now, to calculate the sum of a geometric progression we can use the formula of sum of G.P.
The formula to find sum of a geometric progression is represented as:
$S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$
Now, we will substitute this equation in the above equation that has been obtained and by substituting, we get,
$\operatorname{Im} (\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}})$ and here, we substitute the value of n as 15.
= $\operatorname{Im} \left( {\dfrac{{a\left( {{r^{15}} - 1} \right)}}{{r - 1}}} \right)$, where the values of a and r are,
$a = {e^{i\theta }}$
$r = {e^{i2\theta }}$
Now, in the above equation we substitute the values of a and r,
$
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i2\theta .15}} - 1} \right)}}{{{e^{i2\theta }} - 1}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i(15)\theta }}\left( {{e^{i(15)\theta }} - {e^{ - i(15)\theta }}} \right)} \right)}}{{{e^{i\theta }}\left( {{e^{i\theta }} - {e^{ - i\theta }}} \right)}}} \right) \\
$,
Here a formula has to be used:
$
\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}} \\
2i.\sin \theta = {e^{i\theta }} - {e^{ - i\theta }} \\
\sin \left( {n\theta } \right) = \dfrac{{{e^{in\theta }} - {e^{ - in\theta }}}}{{2i}} \\
2i.\sin \left( {n\theta } \right) = {e^{in\theta }} - {e^{ - in\theta }} \\
$
So, by substituting the values of these formula in the above equation, we get,
$
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {2i.\sin \left( {15\theta } \right)} \right)}}{{2i.\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{\left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right)\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}\operatorname{Im} \left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}.\sin \left( {15\theta } \right) \\
= \dfrac{{{{\sin }^2}\left( {15\theta } \right)}}{{\sin \left( \theta \right)}} \\
$,
Now, it is given in the question that the value of theta is ${2^0}$.
$
= \dfrac{{{{\sin }^2}\left( {{{30}^0}} \right)}}{{\sin \left( {{2^0}} \right)}} \\
(\because {\text{sin3}}{{\text{0}}^0} = \dfrac{1}{2}) \\
$
Hence on putting value we get,
$\dfrac{1}{{4\sin {2^0}}}$
Therefore, the final answer is $\dfrac{1}{{4\sin {2^0}}}$ and the correct option is: D.
Note: Whenever we get this type of question the key concept of solving is we have to remember all the formulae of complex number and GP like $S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$,
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\] These formulae help in solving these types of questions easily.
Complete step-by-step answer:
We can represent a complex number as:
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\].
We need to find out the value of \[\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} \]. We can substitute the value of z as ${e^{i\theta }}$.
$
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( {{e^{i\theta }}} \right)}^{2m - 1}}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = Im\sum\limits_{m = 1}^{15} {\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
$
The series formed inside the summation is in G.P, whose first term can be found by substituting the initial value of m i.e. 1 and therefore,
$a = {e^{i\theta }}$
Now, to find the common ratio of this G.P, we have to take the ratio of second term and first term.
$r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{e^{i3\theta }}}}{{{e^{i\theta }}}} = {e^{i2\theta }}$
Now, to calculate the sum of a geometric progression we can use the formula of sum of G.P.
The formula to find sum of a geometric progression is represented as:
$S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$
Now, we will substitute this equation in the above equation that has been obtained and by substituting, we get,
$\operatorname{Im} (\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}})$ and here, we substitute the value of n as 15.
= $\operatorname{Im} \left( {\dfrac{{a\left( {{r^{15}} - 1} \right)}}{{r - 1}}} \right)$, where the values of a and r are,
$a = {e^{i\theta }}$
$r = {e^{i2\theta }}$
Now, in the above equation we substitute the values of a and r,
$
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i2\theta .15}} - 1} \right)}}{{{e^{i2\theta }} - 1}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i(15)\theta }}\left( {{e^{i(15)\theta }} - {e^{ - i(15)\theta }}} \right)} \right)}}{{{e^{i\theta }}\left( {{e^{i\theta }} - {e^{ - i\theta }}} \right)}}} \right) \\
$,
Here a formula has to be used:
$
\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}} \\
2i.\sin \theta = {e^{i\theta }} - {e^{ - i\theta }} \\
\sin \left( {n\theta } \right) = \dfrac{{{e^{in\theta }} - {e^{ - in\theta }}}}{{2i}} \\
2i.\sin \left( {n\theta } \right) = {e^{in\theta }} - {e^{ - in\theta }} \\
$
So, by substituting the values of these formula in the above equation, we get,
$
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {2i.\sin \left( {15\theta } \right)} \right)}}{{2i.\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{\left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right)\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}\operatorname{Im} \left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}.\sin \left( {15\theta } \right) \\
= \dfrac{{{{\sin }^2}\left( {15\theta } \right)}}{{\sin \left( \theta \right)}} \\
$,
Now, it is given in the question that the value of theta is ${2^0}$.
$
= \dfrac{{{{\sin }^2}\left( {{{30}^0}} \right)}}{{\sin \left( {{2^0}} \right)}} \\
(\because {\text{sin3}}{{\text{0}}^0} = \dfrac{1}{2}) \\
$
Hence on putting value we get,
$\dfrac{1}{{4\sin {2^0}}}$
Therefore, the final answer is $\dfrac{1}{{4\sin {2^0}}}$ and the correct option is: D.
Note: Whenever we get this type of question the key concept of solving is we have to remember all the formulae of complex number and GP like $S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$,
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\] These formulae help in solving these types of questions easily.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

