
Let \[z = \cos \theta + i\sin \theta \]. Then the value of \[\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} \] at \[\theta {\text{ }} = {\text{ }}{2^0}\] is
$
{\text{A}}{\text{. }}\dfrac{1}{{\sin {2^0}}} \\
{\text{B}}{\text{. }}\dfrac{1}{{3\sin {2^0}}} \\
{\text{C}}{\text{. }}\dfrac{1}{{2\sin {2^0}}} \\
{\text{D}}{\text{. }}\dfrac{1}{{4\sin {2^0}}} \\
$
Answer
510.9k+ views
Hint: Write the complex number in exponential form and substitute it in the given summation and it will be seen that the term inside the summation will form a geometric progression so we will solve the series with the help of suitable formulas and hence we will solve the summation and find its final value.
Complete step-by-step answer:
We can represent a complex number as:
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\].
We need to find out the value of \[\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} \]. We can substitute the value of z as ${e^{i\theta }}$.
$
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( {{e^{i\theta }}} \right)}^{2m - 1}}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = Im\sum\limits_{m = 1}^{15} {\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
$
The series formed inside the summation is in G.P, whose first term can be found by substituting the initial value of m i.e. 1 and therefore,
$a = {e^{i\theta }}$
Now, to find the common ratio of this G.P, we have to take the ratio of second term and first term.
$r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{e^{i3\theta }}}}{{{e^{i\theta }}}} = {e^{i2\theta }}$
Now, to calculate the sum of a geometric progression we can use the formula of sum of G.P.
The formula to find sum of a geometric progression is represented as:
$S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$
Now, we will substitute this equation in the above equation that has been obtained and by substituting, we get,
$\operatorname{Im} (\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}})$ and here, we substitute the value of n as 15.
= $\operatorname{Im} \left( {\dfrac{{a\left( {{r^{15}} - 1} \right)}}{{r - 1}}} \right)$, where the values of a and r are,
$a = {e^{i\theta }}$
$r = {e^{i2\theta }}$
Now, in the above equation we substitute the values of a and r,
$
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i2\theta .15}} - 1} \right)}}{{{e^{i2\theta }} - 1}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i(15)\theta }}\left( {{e^{i(15)\theta }} - {e^{ - i(15)\theta }}} \right)} \right)}}{{{e^{i\theta }}\left( {{e^{i\theta }} - {e^{ - i\theta }}} \right)}}} \right) \\
$,
Here a formula has to be used:
$
\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}} \\
2i.\sin \theta = {e^{i\theta }} - {e^{ - i\theta }} \\
\sin \left( {n\theta } \right) = \dfrac{{{e^{in\theta }} - {e^{ - in\theta }}}}{{2i}} \\
2i.\sin \left( {n\theta } \right) = {e^{in\theta }} - {e^{ - in\theta }} \\
$
So, by substituting the values of these formula in the above equation, we get,
$
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {2i.\sin \left( {15\theta } \right)} \right)}}{{2i.\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{\left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right)\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}\operatorname{Im} \left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}.\sin \left( {15\theta } \right) \\
= \dfrac{{{{\sin }^2}\left( {15\theta } \right)}}{{\sin \left( \theta \right)}} \\
$,
Now, it is given in the question that the value of theta is ${2^0}$.
$
= \dfrac{{{{\sin }^2}\left( {{{30}^0}} \right)}}{{\sin \left( {{2^0}} \right)}} \\
(\because {\text{sin3}}{{\text{0}}^0} = \dfrac{1}{2}) \\
$
Hence on putting value we get,
$\dfrac{1}{{4\sin {2^0}}}$
Therefore, the final answer is $\dfrac{1}{{4\sin {2^0}}}$ and the correct option is: D.
Note: Whenever we get this type of question the key concept of solving is we have to remember all the formulae of complex number and GP like $S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$,
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\] These formulae help in solving these types of questions easily.
Complete step-by-step answer:
We can represent a complex number as:
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\].
We need to find out the value of \[\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} \]. We can substitute the value of z as ${e^{i\theta }}$.
$
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( {{e^{i\theta }}} \right)}^{2m - 1}}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {Im\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
\sum\limits_{m = 1}^{15} {Im\left( {{z^{2m - 1}}} \right)} = Im\sum\limits_{m = 1}^{15} {\left( {{{\left( e \right)}^{i(2m - 1)\theta }}} \right)} \\
$
The series formed inside the summation is in G.P, whose first term can be found by substituting the initial value of m i.e. 1 and therefore,
$a = {e^{i\theta }}$
Now, to find the common ratio of this G.P, we have to take the ratio of second term and first term.
$r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{e^{i3\theta }}}}{{{e^{i\theta }}}} = {e^{i2\theta }}$
Now, to calculate the sum of a geometric progression we can use the formula of sum of G.P.
The formula to find sum of a geometric progression is represented as:
$S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$
Now, we will substitute this equation in the above equation that has been obtained and by substituting, we get,
$\operatorname{Im} (\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}})$ and here, we substitute the value of n as 15.
= $\operatorname{Im} \left( {\dfrac{{a\left( {{r^{15}} - 1} \right)}}{{r - 1}}} \right)$, where the values of a and r are,
$a = {e^{i\theta }}$
$r = {e^{i2\theta }}$
Now, in the above equation we substitute the values of a and r,
$
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i2\theta .15}} - 1} \right)}}{{{e^{i2\theta }} - 1}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{i\theta }}\left( {{e^{i(15)\theta }}\left( {{e^{i(15)\theta }} - {e^{ - i(15)\theta }}} \right)} \right)}}{{{e^{i\theta }}\left( {{e^{i\theta }} - {e^{ - i\theta }}} \right)}}} \right) \\
$,
Here a formula has to be used:
$
\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}} \\
2i.\sin \theta = {e^{i\theta }} - {e^{ - i\theta }} \\
\sin \left( {n\theta } \right) = \dfrac{{{e^{in\theta }} - {e^{ - in\theta }}}}{{2i}} \\
2i.\sin \left( {n\theta } \right) = {e^{in\theta }} - {e^{ - in\theta }} \\
$
So, by substituting the values of these formula in the above equation, we get,
$
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {2i.\sin \left( {15\theta } \right)} \right)}}{{2i.\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{{e^{15i\theta }}\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \operatorname{Im} \left( {\dfrac{{\left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right)\left( {\sin \left( {15\theta } \right)} \right)}}{{\sin \left( \theta \right)}}} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}\operatorname{Im} \left( {\cos \left( {15\theta } \right) + i\left( {\sin \left( {15\theta } \right)} \right)} \right) \\
= \dfrac{{\sin \left( {15\theta } \right)}}{{\sin \left( \theta \right)}}.\sin \left( {15\theta } \right) \\
= \dfrac{{{{\sin }^2}\left( {15\theta } \right)}}{{\sin \left( \theta \right)}} \\
$,
Now, it is given in the question that the value of theta is ${2^0}$.
$
= \dfrac{{{{\sin }^2}\left( {{{30}^0}} \right)}}{{\sin \left( {{2^0}} \right)}} \\
(\because {\text{sin3}}{{\text{0}}^0} = \dfrac{1}{2}) \\
$
Hence on putting value we get,
$\dfrac{1}{{4\sin {2^0}}}$
Therefore, the final answer is $\dfrac{1}{{4\sin {2^0}}}$ and the correct option is: D.
Note: Whenever we get this type of question the key concept of solving is we have to remember all the formulae of complex number and GP like $S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$,
\[z = \cos \theta + i\sin \theta = {e^{i\theta }}\] These formulae help in solving these types of questions easily.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
