
Let u and v are unit vectors and w is a vector such that \[u \times v + u = w\,and\,w \times u = v\], then find the value of \[[\vec u\,\vec v\,\vec w] \] ?
Answer
494.7k+ views
Hint: Here the given question is of vector algebra, where we need to solve according to the properties of vector algebra, in order to solve it we know that unit vector are the vector having a magnitude of one, and some properties like commutative and distributive property will also be used here.
Formulae Used:
\[ \Rightarrow [\vec u\,\vec v\,\vec w] = \vec u.(\vec v \times \vec w)\]
Complete step by step answer:
The given question need to be solved with the help of rules related with the vector algebra in order to get the solution for this question, here first we need to expand the given conditions and then try to reach to the asked question, on solving we get:
Given that:
\[
\Rightarrow \vec u \times \vec v + \vec u = \vec w\,and\,\vec w \times \vec u = \vec v \\
\Rightarrow \left( {\vec u \times \vec v + \vec u} \right) \times \vec u = \vec w \times \vec u \\
\Rightarrow \left( {\vec u \times \vec v} \right) \times \vec u + \vec u \times \vec u = \vec v\,(as\,\vec w \times \vec u = \vec v) \\
\Rightarrow \left( {\vec u.\vec u} \right)\vec v - \left( {\vec v.\vec u} \right)\vec u + \vec u \times \vec u = \vec v \\
\]
Using, \[\vec u.\vec u = 1,\,and\,\vec u \times \vec u = 0\], since the dot product of the unit vector is one, and the cross product of the unit vector is zero.
\[
\Rightarrow \left( 1 \right)\vec v - \left( {\vec v.\vec u} \right)\vec u + 0 = \vec v \\
\Rightarrow \vec v - \vec v = \left( {\vec v.\vec u} \right)\vec u \\
\Rightarrow \left( {\vec v.\vec u} \right)\vec u = 0 \\
\Rightarrow \vec u.\vec v = 0\,(as\,\vec u \ne 0)..................................................(eq1) \\
\Rightarrow [\vec u\,\vec v\,\vec w] = \vec u.(\vec v \times \vec w) \\
\Rightarrow given\,\vec u \times \vec v + \vec u = \vec w \\
\Rightarrow \vec u.(\vec v \times \left( {\vec u \times \vec v + \vec u} \right)) \\
\Rightarrow \vec u.(\vec v \times (\vec u \times \vec v) + \vec v \times \vec u) \\
\Rightarrow \vec u.((\vec v.\vec v)\vec u - (\vec v.\vec u)\vec v + \vec v \times \vec u) \\
\Rightarrow \vec u.(|{{\vec v}^2}|\vec u - 0 + \vec v \times \vec u)\,\sin ce\,(\vec v.\vec u = 0,from\,eq1) \\
\Rightarrow |{{\vec v}^2}|(\vec u.\vec u) + \vec u.(\vec v \times \vec u) \\
\]
\[
\Rightarrow |{{\vec v}^2}||\vec u{|^2} + 0 \\
\Rightarrow 1\,(\sin ce\,|\vec v|,|\vec u| = 1\,unit\,vectors) \\
\Rightarrow \therefore [\vec u\,\vec v\,\vec w] = 1 \\
\]
Here we get the answer for the question, the asked magnitude value is one.
Note: Here the given question is of vector algebra and vector algebra works on its properties, multiplication, division has its own rule, here there are two types of multiplication, one is dot product and the other one is cross product and they act separately.
Formulae Used:
\[ \Rightarrow [\vec u\,\vec v\,\vec w] = \vec u.(\vec v \times \vec w)\]
Complete step by step answer:
The given question need to be solved with the help of rules related with the vector algebra in order to get the solution for this question, here first we need to expand the given conditions and then try to reach to the asked question, on solving we get:
Given that:
\[
\Rightarrow \vec u \times \vec v + \vec u = \vec w\,and\,\vec w \times \vec u = \vec v \\
\Rightarrow \left( {\vec u \times \vec v + \vec u} \right) \times \vec u = \vec w \times \vec u \\
\Rightarrow \left( {\vec u \times \vec v} \right) \times \vec u + \vec u \times \vec u = \vec v\,(as\,\vec w \times \vec u = \vec v) \\
\Rightarrow \left( {\vec u.\vec u} \right)\vec v - \left( {\vec v.\vec u} \right)\vec u + \vec u \times \vec u = \vec v \\
\]
Using, \[\vec u.\vec u = 1,\,and\,\vec u \times \vec u = 0\], since the dot product of the unit vector is one, and the cross product of the unit vector is zero.
\[
\Rightarrow \left( 1 \right)\vec v - \left( {\vec v.\vec u} \right)\vec u + 0 = \vec v \\
\Rightarrow \vec v - \vec v = \left( {\vec v.\vec u} \right)\vec u \\
\Rightarrow \left( {\vec v.\vec u} \right)\vec u = 0 \\
\Rightarrow \vec u.\vec v = 0\,(as\,\vec u \ne 0)..................................................(eq1) \\
\Rightarrow [\vec u\,\vec v\,\vec w] = \vec u.(\vec v \times \vec w) \\
\Rightarrow given\,\vec u \times \vec v + \vec u = \vec w \\
\Rightarrow \vec u.(\vec v \times \left( {\vec u \times \vec v + \vec u} \right)) \\
\Rightarrow \vec u.(\vec v \times (\vec u \times \vec v) + \vec v \times \vec u) \\
\Rightarrow \vec u.((\vec v.\vec v)\vec u - (\vec v.\vec u)\vec v + \vec v \times \vec u) \\
\Rightarrow \vec u.(|{{\vec v}^2}|\vec u - 0 + \vec v \times \vec u)\,\sin ce\,(\vec v.\vec u = 0,from\,eq1) \\
\Rightarrow |{{\vec v}^2}|(\vec u.\vec u) + \vec u.(\vec v \times \vec u) \\
\]
\[
\Rightarrow |{{\vec v}^2}||\vec u{|^2} + 0 \\
\Rightarrow 1\,(\sin ce\,|\vec v|,|\vec u| = 1\,unit\,vectors) \\
\Rightarrow \therefore [\vec u\,\vec v\,\vec w] = 1 \\
\]
Here we get the answer for the question, the asked magnitude value is one.
Note: Here the given question is of vector algebra and vector algebra works on its properties, multiplication, division has its own rule, here there are two types of multiplication, one is dot product and the other one is cross product and they act separately.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

