
Let $P = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right)$ and I be the identity matrix of order 3. If $Q = [{q_{ij}}]$ is a matrix such that ${P^{50}} - Q =
I$, then $\dfrac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}}$equals
A. 52
B. 103
C. 201
D. 205
Answer
512.1k+ views
Hint: This is a very interesting problem related with matrices and their properties. First compute the matrix ${P^{50}}$. Then find the difference matrix ${P^{50}} - Q$. Finally equate it with identity matrix I of the same order, element by element values. Some mathematical operations will give the result.
Complete step-by-step answer:
Given matrix in the problem is,
$P = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right)$
Now, we will compute the value of matrix ${P^2} = P \times P$as follows
\[
{P^2} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right) \\
\Rightarrow {P^2} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
8&1&0 \\
{16 \times (1 + 2)}&8&1
\end{array}} \right) \\
\]
Now, we will compute ${P^3} = {P^2} \times P$as follows
\[
{P^3} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
8&1&0 \\
{16 \times (1 + 2)}&8&1
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right) \\
\Rightarrow {P^3} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{12}&1&0 \\
{16 \times (1 + 2 + 3)}&{12}&1
\end{array}} \right) \\
\]
Similarly we can compute other matrix with higher powers. So, we can see the pattern of the values of
matrix P with some power.
Thus we can conclude with the value of ${P^{50}}$ as follows:
\[ \Rightarrow {P^{50}} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{4 \times 50}&1&0 \\
{16 \times (1 + 2 + 3 + ... + 50)}&{4 \times 50}&1
\end{array}} \right)\]
After simplifying the above matrix as follws :
\[ \Rightarrow {P^{50}} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{200}&1&0 \\
{20400}&{200}&1
\end{array}} \right)\]
Now, we need to assume the matrix Q of order 3 as:
$Q = \left( {\begin{array}{*{20}{c}}
{{q_{11}}}&{{q_{12}}}&{{q_{13}}} \\
{{q_{21}}}&{{q_{22}}}&{{q_{23}}} \\
{{q_{31}}}&{{q_{32}}}&{{q_{33}}}
\end{array}} \right)$here $Q = [{q_{ij}}]$with general terms as ${q_{ij}}$with ith row and jth column.
Here I is the identity matrix of order 3.
So,
\[I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
Therefore we have,
${P^{50}} - Q = I$
After substituting the terms and their values we will get
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{200}&1&0 \\
{20400}&{200}&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{{q_{11}}}&{{q_{12}}}&{{q_{13}}} \\
{{q_{21}}}&{{q_{22}}}&{{q_{23}}} \\
{{q_{31}}}&{{q_{32}}}&{{q_{33}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
\[\]Further simplification will give,
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{1 - {q_{11}}}&{{q_{12}}}&{{q_{13}}} \\
{200 - {q_{21}}}&{1 - {q_{22}}}&{{q_{23}}} \\
{20400 - {q_{31}}}&{200 - {q_{32}}}&{1 - {q_{33}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
We will compare individual corresponding elements on both the sides, we will get
\[
20400 - {q_{31}} = 0 \\
\Rightarrow {q_{31}} = 20400 \\
\]
Similarly we can have
$
200 - {q_{21}} = 0 \\
\Rightarrow {q_{21}} = 200 \\
$
And finally we will have
$
200 - {q_{32}} = 0 \\
\Rightarrow {q_{32}} = 200 \\
$
Now after getting required three terms, we will evaluate the following term with needed
substitution and further simplification,
$
\dfrac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}} = \dfrac{{20400 + 200}}{{200}} \\
\Rightarrow \dfrac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}} = \dfrac{{20600}}{{200}} \\
\Rightarrow \dfrac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}} = 103 \\
$
$\therefore $ The required value is 103.
Thus option B is the correct answer.
Note: Above tricky question will be lengthy, if suitable concept is not used for its solution. Also knowledge of matrices, about their terms and further Identity matrix will help a lot for finding solutions. Term by term comparisons are used here by following the principle of equivalent matrices.
Complete step-by-step answer:
Given matrix in the problem is,
$P = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right)$
Now, we will compute the value of matrix ${P^2} = P \times P$as follows
\[
{P^2} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right) \\
\Rightarrow {P^2} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
8&1&0 \\
{16 \times (1 + 2)}&8&1
\end{array}} \right) \\
\]
Now, we will compute ${P^3} = {P^2} \times P$as follows
\[
{P^3} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
8&1&0 \\
{16 \times (1 + 2)}&8&1
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
1&0&0 \\
4&1&0 \\
{16}&4&1
\end{array}} \right) \\
\Rightarrow {P^3} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{12}&1&0 \\
{16 \times (1 + 2 + 3)}&{12}&1
\end{array}} \right) \\
\]
Similarly we can compute other matrix with higher powers. So, we can see the pattern of the values of
matrix P with some power.
Thus we can conclude with the value of ${P^{50}}$ as follows:
\[ \Rightarrow {P^{50}} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{4 \times 50}&1&0 \\
{16 \times (1 + 2 + 3 + ... + 50)}&{4 \times 50}&1
\end{array}} \right)\]
After simplifying the above matrix as follws :
\[ \Rightarrow {P^{50}} = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{200}&1&0 \\
{20400}&{200}&1
\end{array}} \right)\]
Now, we need to assume the matrix Q of order 3 as:
$Q = \left( {\begin{array}{*{20}{c}}
{{q_{11}}}&{{q_{12}}}&{{q_{13}}} \\
{{q_{21}}}&{{q_{22}}}&{{q_{23}}} \\
{{q_{31}}}&{{q_{32}}}&{{q_{33}}}
\end{array}} \right)$here $Q = [{q_{ij}}]$with general terms as ${q_{ij}}$with ith row and jth column.
Here I is the identity matrix of order 3.
So,
\[I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
Therefore we have,
${P^{50}} - Q = I$
After substituting the terms and their values we will get
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
{200}&1&0 \\
{20400}&{200}&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{{q_{11}}}&{{q_{12}}}&{{q_{13}}} \\
{{q_{21}}}&{{q_{22}}}&{{q_{23}}} \\
{{q_{31}}}&{{q_{32}}}&{{q_{33}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
\[\]Further simplification will give,
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{1 - {q_{11}}}&{{q_{12}}}&{{q_{13}}} \\
{200 - {q_{21}}}&{1 - {q_{22}}}&{{q_{23}}} \\
{20400 - {q_{31}}}&{200 - {q_{32}}}&{1 - {q_{33}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)\]
We will compare individual corresponding elements on both the sides, we will get
\[
20400 - {q_{31}} = 0 \\
\Rightarrow {q_{31}} = 20400 \\
\]
Similarly we can have
$
200 - {q_{21}} = 0 \\
\Rightarrow {q_{21}} = 200 \\
$
And finally we will have
$
200 - {q_{32}} = 0 \\
\Rightarrow {q_{32}} = 200 \\
$
Now after getting required three terms, we will evaluate the following term with needed
substitution and further simplification,
$
\dfrac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}} = \dfrac{{20400 + 200}}{{200}} \\
\Rightarrow \dfrac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}} = \dfrac{{20600}}{{200}} \\
\Rightarrow \dfrac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}} = 103 \\
$
$\therefore $ The required value is 103.
Thus option B is the correct answer.
Note: Above tricky question will be lengthy, if suitable concept is not used for its solution. Also knowledge of matrices, about their terms and further Identity matrix will help a lot for finding solutions. Term by term comparisons are used here by following the principle of equivalent matrices.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
