
Let matrix $A=\left[ \begin{matrix}
x & y & -z \\
1 & 2 & 3 \\
1 & 1 & 2 \\
\end{matrix} \right]$ , where $x,y,z\in N$ . If $\det \left( adj\left( adjA \right) \right)={{2}^{8}}{{3}^{4}}$ , where $adjA$ denotes the adjoint of square matrix A, then the number of such matrices A is:
(a) 220
(b) 45
(c) 55
(d) 110
Answer
512.1k+ views
Hint: To find the number of matrices like A, we have to use the property \[\left| adj\left( adjA \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{2}}}}\] (where n is the order of the matrix A) to find the value of determinant A. Then, we have to find the determinant of A from the given matrix and equate the value of $\left| A \right|$ from the previous step. The result of this step will be an equation of the form ${{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m$ whose solution is given by $^{m-1}{{C}_{n-1}}$ . The value of this combination will be the required answer.
Complete step-by-step answer:
We have to find the number of matrices like A. We are given that $\det \left( adj\left( adjA \right) \right)={{2}^{8}}{{3}^{4}}$ .
$\left| adj\left( adjA \right) \right|={{2}^{8}}{{3}^{4}}$
We know that \[\left| adj\left( adjA \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{2}}}}\] , where n is the order of the matrix A. Here, we can see that the order of the matrix, $n=3$ .Therefore, we can write the given condition as
$\begin{align}
& \Rightarrow \left| adj\left( adjA \right) \right|={{2}^{8}}{{3}^{4}} \\
& \Rightarrow {{\left| A \right|}^{{{\left( 3-1 \right)}^{2}}}}={{2}^{8}}{{3}^{4}} \\
\end{align}$
Let us simplify the LHS of the above equation.
$\begin{align}
& \Rightarrow {{\left| A \right|}^{{{2}^{2}}}}={{2}^{8}}{{3}^{4}} \\
& \Rightarrow {{\left| A \right|}^{4}}={{2}^{8}}{{3}^{4}} \\
\end{align}$
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ . Let us rewrite the exponents in the RHS using this rule.
$\Rightarrow {{\left| A \right|}^{4}}={{\left( {{2}^{2}}\times 3 \right)}^{4}}$
From the above equation, we can see that the exponents on both the sides are equal. Hence, we can equate their bases.
$\Rightarrow \left| A \right|=\left( {{2}^{2}}\times 3 \right)$
Now, let us simplify the RHS of the above equation.
$\begin{align}
& \Rightarrow \left| A \right|=4\times 3 \\
& \Rightarrow \left| A \right|=12...\left( i \right) \\
\end{align}$
Now, we are given with $A=\left[ \begin{matrix}
x & y & -z \\
1 & 2 & 3 \\
1 & 1 & 2 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix A.
$\begin{align}
& \Rightarrow \left| A \right|=\left| \begin{matrix}
x & y & -z \\
1 & 2 & 3 \\
1 & 1 & 2 \\
\end{matrix} \right| \\
& \Rightarrow \left| A \right|=x\left( 4-3 \right)-y\left( 2-3 \right)-z\left( 1-2 \right) \\
\end{align}$
Let us simplify the above equation.
$\Rightarrow \left| A \right|=x+y+z$
We have to substitute (i) in the above equation.
$\Rightarrow x+y+z=12...\left( ii \right)$
We know that for equation of the form ${{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m$ , the solution is given as $^{m-1}{{C}_{n-1}}$ . Here, from the above equation, we will get $m=12$ and $n=3$ . Hence, we can write the solution of the equation (ii) as
$\begin{align}
& ^{12-1}{{C}_{3-1}} \\
& {{\Rightarrow }^{11}}{{C}_{2}} \\
\end{align}$
We know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Let us expand the above combination.
$\begin{align}
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11!}{2!\left( 11-2 \right)!} \\
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11!}{2!9!} \\
\end{align}$
We know that $n!=n\times \left( n-2 \right)\times \left( n-3 \right)!$ . Hence, we can write the above equation as
${{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11\times 10\times 9!}{\left( 2\times 1 \right)9!}$
Let us cancel 9! From the numerator and denominator of the RHS and simplify.
$\begin{align}
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11\times 10}{\left( 2\times 1 \right)} \\
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{110}{2} \\
& {{\Rightarrow }^{11}}{{C}_{2}}=55 \\
\end{align}$
Therefore, 55 matrices like A are possible.
So, the correct answer is “Option (c)”.
Note: Students must know the properties and rules associated with matrices, determinants and adjoints. They must know to find the determinant of a matrix. They must be thorough with the basic solutions like the solution of the equation of the form ${{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m$ . Students must know the formula of permutations and combinations.
Complete step-by-step answer:
We have to find the number of matrices like A. We are given that $\det \left( adj\left( adjA \right) \right)={{2}^{8}}{{3}^{4}}$ .
$\left| adj\left( adjA \right) \right|={{2}^{8}}{{3}^{4}}$
We know that \[\left| adj\left( adjA \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{2}}}}\] , where n is the order of the matrix A. Here, we can see that the order of the matrix, $n=3$ .Therefore, we can write the given condition as
$\begin{align}
& \Rightarrow \left| adj\left( adjA \right) \right|={{2}^{8}}{{3}^{4}} \\
& \Rightarrow {{\left| A \right|}^{{{\left( 3-1 \right)}^{2}}}}={{2}^{8}}{{3}^{4}} \\
\end{align}$
Let us simplify the LHS of the above equation.
$\begin{align}
& \Rightarrow {{\left| A \right|}^{{{2}^{2}}}}={{2}^{8}}{{3}^{4}} \\
& \Rightarrow {{\left| A \right|}^{4}}={{2}^{8}}{{3}^{4}} \\
\end{align}$
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ . Let us rewrite the exponents in the RHS using this rule.
$\Rightarrow {{\left| A \right|}^{4}}={{\left( {{2}^{2}}\times 3 \right)}^{4}}$
From the above equation, we can see that the exponents on both the sides are equal. Hence, we can equate their bases.
$\Rightarrow \left| A \right|=\left( {{2}^{2}}\times 3 \right)$
Now, let us simplify the RHS of the above equation.
$\begin{align}
& \Rightarrow \left| A \right|=4\times 3 \\
& \Rightarrow \left| A \right|=12...\left( i \right) \\
\end{align}$
Now, we are given with $A=\left[ \begin{matrix}
x & y & -z \\
1 & 2 & 3 \\
1 & 1 & 2 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix A.
$\begin{align}
& \Rightarrow \left| A \right|=\left| \begin{matrix}
x & y & -z \\
1 & 2 & 3 \\
1 & 1 & 2 \\
\end{matrix} \right| \\
& \Rightarrow \left| A \right|=x\left( 4-3 \right)-y\left( 2-3 \right)-z\left( 1-2 \right) \\
\end{align}$
Let us simplify the above equation.
$\Rightarrow \left| A \right|=x+y+z$
We have to substitute (i) in the above equation.
$\Rightarrow x+y+z=12...\left( ii \right)$
We know that for equation of the form ${{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m$ , the solution is given as $^{m-1}{{C}_{n-1}}$ . Here, from the above equation, we will get $m=12$ and $n=3$ . Hence, we can write the solution of the equation (ii) as
$\begin{align}
& ^{12-1}{{C}_{3-1}} \\
& {{\Rightarrow }^{11}}{{C}_{2}} \\
\end{align}$
We know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Let us expand the above combination.
$\begin{align}
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11!}{2!\left( 11-2 \right)!} \\
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11!}{2!9!} \\
\end{align}$
We know that $n!=n\times \left( n-2 \right)\times \left( n-3 \right)!$ . Hence, we can write the above equation as
${{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11\times 10\times 9!}{\left( 2\times 1 \right)9!}$
Let us cancel 9! From the numerator and denominator of the RHS and simplify.
$\begin{align}
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11\times 10}{\left( 2\times 1 \right)} \\
& {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{110}{2} \\
& {{\Rightarrow }^{11}}{{C}_{2}}=55 \\
\end{align}$
Therefore, 55 matrices like A are possible.
So, the correct answer is “Option (c)”.
Note: Students must know the properties and rules associated with matrices, determinants and adjoints. They must know to find the determinant of a matrix. They must be thorough with the basic solutions like the solution of the equation of the form ${{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m$ . Students must know the formula of permutations and combinations.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

