
Let $ f:\mathsf{\mathbb{N}}\to \mathsf{\mathbb{R}} $ be such that $ f\left( 1 \right)+2f\left( 2 \right)+3f\left( 3 \right)+...nf\left( n \right)=n\left( n+1 \right)f\left( n \right) $ for all $ n\in \mathsf{\mathbb{N}},n\ge 2 $ and $ f\left( 1 \right)=1 $ . If the value of $ f\left( 1003 \right)=\dfrac{1}{k} $ then $ k= $ \[\]
A. $ 1003 $ \[\]
B. $ 2003 $ \[\]
C. $ 2005 $ \[\]
D. $ 2006 $ \[\]
Answer
568.2k+ views
Hint: We recall from algebra of functions that if $ C $ is constant and $ f\left( x \right) $ is function then $ Cf\left( x \right) $ will have the same domain as $ f\left( x \right) $ . We choose a counter $ k=1,2,3,...n $ and put $ k=n-1 $ in the given condition then subtract respective sides to get $ kf\left( k \right) $ is constant for all $ k=1,2,3,...n $ . We use the given condition $ f\left( 1 \right)=1 $ and find a pattern by evaluating find $ f\left( 2 \right),f\left( 3 \right),...,f\left( n \right) $ . We find $ f\left( n \right) $ and then put $ n=1003 $ to find the answer. \[\]
Complete step by step answer:
We are given a function from natural number set $ \mathsf{\mathbb{N}} $ to the complex number set $ \mathsf{\mathbb{R}} $ which satisfies two conditions : $ f\left( 1 \right)=1 $ and
$ f\left( 1 \right)+2f\left( 2 \right)+3f\left( 3 \right)+...nf\left( n \right)=n\left( n+1 \right)f\left( n \right).......\left( 1 \right) $
We assume a counter $ k $ which runs on integer’s $ 1,2,3...,n $ .We put $ k=n-1 $ and have the statement as;
$ f\left( 1 \right)+2f\left( 2 \right)+3f\left( 3 \right)+...+\left( n-1 \right)f\left( n-1 \right)=n\left( n-1 \right)f\left( n-1 \right).......\left( 2 \right) $
We subtract respective sides of equation (2) from equation (1) to have;
\[nf\left( n \right)=n\left( n+1 \right)f\left( n \right)-n\left( n-1 \right)f\left( n-1 \right)\]
We divide all of the terms by $ n $ to have;
\[\begin{align}
& f\left( n \right)=\left( n+1 \right)f\left( n \right)-\left( n-1 \right)f\left( n-1 \right) \\
& \Rightarrow \left( n+1-1 \right)f\left( n \right)=\left( n-1 \right)f\left( n-1 \right) \\
& \Rightarrow nf\left( n \right)=\left( n-1 \right)f\left( n-1 \right)........\left( 3 \right) \\
\end{align}\]
We see that $ kf\left( k \right) $ is a constant for all $ k=1,2,3,....n $ . We are given the values $ f\left( 1 \right)=1 $ in the question. Let us put $ n=2 $ since $ n $ is valid for $ n\ge 2 $ in above equation to have;
\[\begin{align}
& 2\cdot f\left( 2 \right)=\left( 2-1 \right)f\left( 2-1 \right) \\
& \Rightarrow 2f\left( 2 \right)=1\cdot f\left( 1 \right)=1\cdot 1 \\
& \Rightarrow f\left( 2 \right)=\dfrac{1}{2} \\
\end{align}\]
We put $ n=3 $ in equation (3) to have;
\[\begin{align}
& 3\cdot f\left( 3 \right)=\left( 3-1 \right)f\left( 3-1 \right) \\
& \Rightarrow 3f\left( 3 \right)=3\cdot f\left( 2 \right)=2\times \dfrac{1}{2} \\
& \Rightarrow f\left( 3 \right)=\dfrac{1}{3} \\
\end{align}\]
We observe that the function $ f\left( k \right) $ for all $ k=2,3...,n $ can be defined as;
\[f\left( k \right)=\dfrac{1}{k}\]
We are given that $ f\left( 1003 \right)=\dfrac{1}{k} $ . So we have;
\[f\left( 1003 \right)=\dfrac{1}{1003}\]
So the value of $ k $ is 1003 and hence the correct option is A. \[\]
Note:
We can also alternatively solve by putting $ k=n+1 $ in the given condition. We know that we could divide all the terms by $ n $ and $ n-1 $ exists because $ n\ge 2 $ .We note that since $ n\in \mathsf{\mathbb{N}} $ the function $ nf\left( n \right) $ will also take inputs from the same domain as $ f\left( n \right) $ .We can also directly find the patterns of $ f\left( 2 \right),f\left( 3 \right),... $ and so on by directly evaluating from the given condition. We should always remember that the addition of a domain is a set function takes value and range is set to where the function returns value.
Complete step by step answer:
We are given a function from natural number set $ \mathsf{\mathbb{N}} $ to the complex number set $ \mathsf{\mathbb{R}} $ which satisfies two conditions : $ f\left( 1 \right)=1 $ and
$ f\left( 1 \right)+2f\left( 2 \right)+3f\left( 3 \right)+...nf\left( n \right)=n\left( n+1 \right)f\left( n \right).......\left( 1 \right) $
We assume a counter $ k $ which runs on integer’s $ 1,2,3...,n $ .We put $ k=n-1 $ and have the statement as;
$ f\left( 1 \right)+2f\left( 2 \right)+3f\left( 3 \right)+...+\left( n-1 \right)f\left( n-1 \right)=n\left( n-1 \right)f\left( n-1 \right).......\left( 2 \right) $
We subtract respective sides of equation (2) from equation (1) to have;
\[nf\left( n \right)=n\left( n+1 \right)f\left( n \right)-n\left( n-1 \right)f\left( n-1 \right)\]
We divide all of the terms by $ n $ to have;
\[\begin{align}
& f\left( n \right)=\left( n+1 \right)f\left( n \right)-\left( n-1 \right)f\left( n-1 \right) \\
& \Rightarrow \left( n+1-1 \right)f\left( n \right)=\left( n-1 \right)f\left( n-1 \right) \\
& \Rightarrow nf\left( n \right)=\left( n-1 \right)f\left( n-1 \right)........\left( 3 \right) \\
\end{align}\]
We see that $ kf\left( k \right) $ is a constant for all $ k=1,2,3,....n $ . We are given the values $ f\left( 1 \right)=1 $ in the question. Let us put $ n=2 $ since $ n $ is valid for $ n\ge 2 $ in above equation to have;
\[\begin{align}
& 2\cdot f\left( 2 \right)=\left( 2-1 \right)f\left( 2-1 \right) \\
& \Rightarrow 2f\left( 2 \right)=1\cdot f\left( 1 \right)=1\cdot 1 \\
& \Rightarrow f\left( 2 \right)=\dfrac{1}{2} \\
\end{align}\]
We put $ n=3 $ in equation (3) to have;
\[\begin{align}
& 3\cdot f\left( 3 \right)=\left( 3-1 \right)f\left( 3-1 \right) \\
& \Rightarrow 3f\left( 3 \right)=3\cdot f\left( 2 \right)=2\times \dfrac{1}{2} \\
& \Rightarrow f\left( 3 \right)=\dfrac{1}{3} \\
\end{align}\]
We observe that the function $ f\left( k \right) $ for all $ k=2,3...,n $ can be defined as;
\[f\left( k \right)=\dfrac{1}{k}\]
We are given that $ f\left( 1003 \right)=\dfrac{1}{k} $ . So we have;
\[f\left( 1003 \right)=\dfrac{1}{1003}\]
So the value of $ k $ is 1003 and hence the correct option is A. \[\]
Note:
We can also alternatively solve by putting $ k=n+1 $ in the given condition. We know that we could divide all the terms by $ n $ and $ n-1 $ exists because $ n\ge 2 $ .We note that since $ n\in \mathsf{\mathbb{N}} $ the function $ nf\left( n \right) $ will also take inputs from the same domain as $ f\left( n \right) $ .We can also directly find the patterns of $ f\left( 2 \right),f\left( 3 \right),... $ and so on by directly evaluating from the given condition. We should always remember that the addition of a domain is a set function takes value and range is set to where the function returns value.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

What are the public facilities provided by the government? Also explain each facility

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

