Answer
Verified
493.2k+ views
Hint: Basic properties of limit is required to solve this kind of problem
Complete step-by-step answer:
As per the given information the functions $\underset{x\to a}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to a}{\mathop{\lim }}\,g(x)$exists.
Now we will consider the options separately.
We know the limit of sum is the sum of limits. So, the limit of sum of two functions is equal to the sum of individual limits of the functions, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ f(x)+g(x) \right]=\underset{x\to a}{\mathop{\lim }}\,f(x)+\underset{x\to a}{\mathop{\lim }}\,g(x)$
This option is correct.
We also know the limit of difference is the difference of the limits. So, the limit of difference of two functions is equal to the difference of individual limits of the functions, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ f(x)-g(x) \right]=\underset{x\to a}{\mathop{\lim }}\,f(x)-\underset{x\to a}{\mathop{\lim }}\,g(x)$
So, this option is also correct.
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ f(x).g(x) \right]=\underset{x\to a}{\mathop{\lim }}\,f(x).\underset{x\to a}{\mathop{\lim }}\,g(x)$
So, this option is also correct.
In functions, the law governing the limits clearly states that the limit value is changed for division of two variable functions.
Now the limit of quotients is the quotient of the limits provided that the denominator is not equal to zero. So, the limit of quotient of two functions is equal to the quotient of individual limits of the functions with a condition that the $g(x)\ne 0$, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ \dfrac{f(x)}{g(x)} \right]=\dfrac{\underset{x\to a}{\mathop{\lim }}\,f(x)}{\underset{x\to a}{\mathop{\lim }}\,g(x)}$, such that $\underset{x\to a}{\mathop{\lim }}\,g(x)\ne 0$
But this condition is not provided in the question. So we don’t know whether the denominator is zero or not.
Hence this option is incomplete.
So, this option is not correct.
Thus, the correct answer is option (d).
Note: Students make mistakes by just observing the equations. Then forget to notice that the condition $\underset{x\to a}{\mathop{\lim }}\,g(x)\ne 0$ is not given. They think all the options are correct. So be careful.
Complete step-by-step answer:
As per the given information the functions $\underset{x\to a}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to a}{\mathop{\lim }}\,g(x)$exists.
Now we will consider the options separately.
We know the limit of sum is the sum of limits. So, the limit of sum of two functions is equal to the sum of individual limits of the functions, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ f(x)+g(x) \right]=\underset{x\to a}{\mathop{\lim }}\,f(x)+\underset{x\to a}{\mathop{\lim }}\,g(x)$
This option is correct.
We also know the limit of difference is the difference of the limits. So, the limit of difference of two functions is equal to the difference of individual limits of the functions, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ f(x)-g(x) \right]=\underset{x\to a}{\mathop{\lim }}\,f(x)-\underset{x\to a}{\mathop{\lim }}\,g(x)$
So, this option is also correct.
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ f(x).g(x) \right]=\underset{x\to a}{\mathop{\lim }}\,f(x).\underset{x\to a}{\mathop{\lim }}\,g(x)$
So, this option is also correct.
In functions, the law governing the limits clearly states that the limit value is changed for division of two variable functions.
Now the limit of quotients is the quotient of the limits provided that the denominator is not equal to zero. So, the limit of quotient of two functions is equal to the quotient of individual limits of the functions with a condition that the $g(x)\ne 0$, that is,
$\underset{x\to a}{\mathop{\lim }}\,\left[ \dfrac{f(x)}{g(x)} \right]=\dfrac{\underset{x\to a}{\mathop{\lim }}\,f(x)}{\underset{x\to a}{\mathop{\lim }}\,g(x)}$, such that $\underset{x\to a}{\mathop{\lim }}\,g(x)\ne 0$
But this condition is not provided in the question. So we don’t know whether the denominator is zero or not.
Hence this option is incomplete.
So, this option is not correct.
Thus, the correct answer is option (d).
Note: Students make mistakes by just observing the equations. Then forget to notice that the condition $\underset{x\to a}{\mathop{\lim }}\,g(x)\ne 0$ is not given. They think all the options are correct. So be careful.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE