
Let ABC be a triangle such that $\angle ACB = \dfrac{\pi }{6}$ and let a, b and c denote the length of the sides opposite to A, B and C respectively. The value(s) of x for which $a = {x^2} + x + 1$, $b = {x^2} - 1$ and $c = 2x + 1$ is(are)
A. $ - \left( {2 + \sqrt 3 } \right)$
B. $1 + \sqrt 3 $
C. $2 + \sqrt 3 $
D. $4\sqrt 3 $
Answer
577.2k+ views
Hint: To solve this question, we will use the concept of Cosine rule (the law of Cosine). According to the Cosine rule, the square of the length of any side of a triangle equals to the sum of the squares of the length of the other sides minus twice of their product multiplied by the cosine of their included angle, i.e. ${a^2} = {b^2} + {c^2} - 2bc\cos A$, ${b^2} = {a^2} + {c^2} - 2ac\cos B$ and ${c^2} = {a^2} + {b^2} - 2ab\cos C$
Complete step-by-step answer:
Given that,
ABC is a triangle and $\angle ACB = \dfrac{\pi }{6}$
a = length of side opposite to A.
b = length of side opposite to B.
c = length of side opposite to C.
we have to find out the value of x, when $a = {x^2} + x + 1$, $b = {x^2} - 1$ and $c = 2x + 1$
So,
As we know that,
According to the Cosine rule, the square of the length of any side of a triangle equals to the sum of the squares of the length of the other sides minus twice their product multiplied by the cosine of their included angle.
We have given,
$\angle ACB = \dfrac{\pi }{6}$
Therefore, applying the Cosine rule for $\angle C$,
${c^2} = {a^2} + {b^2} - 2ab\cos C$
This can also be written as:
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
Putting the value of a, b and c in the above equation, we will get
$\cos \dfrac{\pi }{6} = \dfrac{{{{\left( {{x^2} + x + 1} \right)}^2} + {{\left( {{x^2} - 1} \right)}^2} - {{\left( {2x + 1} \right)}^2}}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}$
By using the appropriate identities, we will solve this
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^4} + 2{x^3} - 3{x^2} - 2x + 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)\left( {{x^2} - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
Dividing \[\left( {{x^2} - 1} \right)\] from numerator and denominator, we will get
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)}}\]
\[ \Rightarrow \sqrt 3 = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)}}\]
Now taking \[\left( {{x^2} + x + 1} \right)\] to the left side,
\[ \Rightarrow \sqrt 3 \left( {{x^2} + x + 1} \right) = \left( {2{x^2} + 2x - 1} \right)\]
Simplifying this,
\[ \Rightarrow {x^2}\left( {\sqrt 3 - 2} \right) + x\left( {\sqrt 3 - 2} \right) + \left( {\sqrt 3 + 1} \right) = 0\] ……… (i)
Now, we find out the roots of the above quadratic equation using the formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ ……… (ii)
Comparing equation (i) with $a{x^2} + bx + c = 0$, we will get
$a = b = \sqrt 3 - 2$ and $c = \sqrt 3 + 1$
Putting these values in equation (ii),
\[
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {{{\left( {\sqrt 3 - 2} \right)}^2} - 4\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 + 1} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 - 2 - 4\sqrt 3 - 4} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{\left( {2 - \sqrt 3 } \right) \pm \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\]
Now, we get 2 values of x,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) + \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = - \left( {\sqrt 3 + 2} \right) \\
\]
Or,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) - \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = \left( {1 + \sqrt 3 } \right) \\
\]
Hence, the value of x will be \[\left( {1 + \sqrt 3 } \right)\] as x > 0.
Therefore, the correct answer is option (B).
Note: Whenever we ask such questions, we have to remember that Cosine rule will be used when two sides and included angles are given or when three sides of a triangle is given. The sine rule states that the sides of a triangle are proportional to the sines of the opposite angles, i.e. given as: $\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
Complete step-by-step answer:
Given that,
ABC is a triangle and $\angle ACB = \dfrac{\pi }{6}$
a = length of side opposite to A.
b = length of side opposite to B.
c = length of side opposite to C.
we have to find out the value of x, when $a = {x^2} + x + 1$, $b = {x^2} - 1$ and $c = 2x + 1$
So,
As we know that,
According to the Cosine rule, the square of the length of any side of a triangle equals to the sum of the squares of the length of the other sides minus twice their product multiplied by the cosine of their included angle.
We have given,
$\angle ACB = \dfrac{\pi }{6}$
Therefore, applying the Cosine rule for $\angle C$,
${c^2} = {a^2} + {b^2} - 2ab\cos C$
This can also be written as:
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
Putting the value of a, b and c in the above equation, we will get
$\cos \dfrac{\pi }{6} = \dfrac{{{{\left( {{x^2} + x + 1} \right)}^2} + {{\left( {{x^2} - 1} \right)}^2} - {{\left( {2x + 1} \right)}^2}}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}$
By using the appropriate identities, we will solve this
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^4} + 2{x^3} - 3{x^2} - 2x + 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)\left( {{x^2} - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
Dividing \[\left( {{x^2} - 1} \right)\] from numerator and denominator, we will get
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)}}\]
\[ \Rightarrow \sqrt 3 = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)}}\]
Now taking \[\left( {{x^2} + x + 1} \right)\] to the left side,
\[ \Rightarrow \sqrt 3 \left( {{x^2} + x + 1} \right) = \left( {2{x^2} + 2x - 1} \right)\]
Simplifying this,
\[ \Rightarrow {x^2}\left( {\sqrt 3 - 2} \right) + x\left( {\sqrt 3 - 2} \right) + \left( {\sqrt 3 + 1} \right) = 0\] ……… (i)
Now, we find out the roots of the above quadratic equation using the formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ ……… (ii)
Comparing equation (i) with $a{x^2} + bx + c = 0$, we will get
$a = b = \sqrt 3 - 2$ and $c = \sqrt 3 + 1$
Putting these values in equation (ii),
\[
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {{{\left( {\sqrt 3 - 2} \right)}^2} - 4\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 + 1} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 - 2 - 4\sqrt 3 - 4} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{\left( {2 - \sqrt 3 } \right) \pm \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\]
Now, we get 2 values of x,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) + \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = - \left( {\sqrt 3 + 2} \right) \\
\]
Or,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) - \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = \left( {1 + \sqrt 3 } \right) \\
\]
Hence, the value of x will be \[\left( {1 + \sqrt 3 } \right)\] as x > 0.
Therefore, the correct answer is option (B).
Note: Whenever we ask such questions, we have to remember that Cosine rule will be used when two sides and included angles are given or when three sides of a triangle is given. The sine rule states that the sides of a triangle are proportional to the sines of the opposite angles, i.e. given as: $\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

