
Let ABC be a triangle such that $\angle ACB = \dfrac{\pi }{6}$ and let a, b and c denote the length of the sides opposite to A, B and C respectively. The value(s) of x for which $a = {x^2} + x + 1$, $b = {x^2} - 1$ and $c = 2x + 1$ is(are)
A. $ - \left( {2 + \sqrt 3 } \right)$
B. $1 + \sqrt 3 $
C. $2 + \sqrt 3 $
D. $4\sqrt 3 $
Answer
512.1k+ views
Hint: To solve this question, we will use the concept of Cosine rule (the law of Cosine). According to the Cosine rule, the square of the length of any side of a triangle equals to the sum of the squares of the length of the other sides minus twice of their product multiplied by the cosine of their included angle, i.e. ${a^2} = {b^2} + {c^2} - 2bc\cos A$, ${b^2} = {a^2} + {c^2} - 2ac\cos B$ and ${c^2} = {a^2} + {b^2} - 2ab\cos C$
Complete step-by-step answer:
Given that,
ABC is a triangle and $\angle ACB = \dfrac{\pi }{6}$
a = length of side opposite to A.
b = length of side opposite to B.
c = length of side opposite to C.
we have to find out the value of x, when $a = {x^2} + x + 1$, $b = {x^2} - 1$ and $c = 2x + 1$
So,
As we know that,
According to the Cosine rule, the square of the length of any side of a triangle equals to the sum of the squares of the length of the other sides minus twice their product multiplied by the cosine of their included angle.
We have given,
$\angle ACB = \dfrac{\pi }{6}$
Therefore, applying the Cosine rule for $\angle C$,
${c^2} = {a^2} + {b^2} - 2ab\cos C$
This can also be written as:
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
Putting the value of a, b and c in the above equation, we will get
$\cos \dfrac{\pi }{6} = \dfrac{{{{\left( {{x^2} + x + 1} \right)}^2} + {{\left( {{x^2} - 1} \right)}^2} - {{\left( {2x + 1} \right)}^2}}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}$
By using the appropriate identities, we will solve this
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^4} + 2{x^3} - 3{x^2} - 2x + 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)\left( {{x^2} - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
Dividing \[\left( {{x^2} - 1} \right)\] from numerator and denominator, we will get
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)}}\]
\[ \Rightarrow \sqrt 3 = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)}}\]
Now taking \[\left( {{x^2} + x + 1} \right)\] to the left side,
\[ \Rightarrow \sqrt 3 \left( {{x^2} + x + 1} \right) = \left( {2{x^2} + 2x - 1} \right)\]
Simplifying this,
\[ \Rightarrow {x^2}\left( {\sqrt 3 - 2} \right) + x\left( {\sqrt 3 - 2} \right) + \left( {\sqrt 3 + 1} \right) = 0\] ……… (i)
Now, we find out the roots of the above quadratic equation using the formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ ……… (ii)
Comparing equation (i) with $a{x^2} + bx + c = 0$, we will get
$a = b = \sqrt 3 - 2$ and $c = \sqrt 3 + 1$
Putting these values in equation (ii),
\[
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {{{\left( {\sqrt 3 - 2} \right)}^2} - 4\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 + 1} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 - 2 - 4\sqrt 3 - 4} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{\left( {2 - \sqrt 3 } \right) \pm \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\]
Now, we get 2 values of x,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) + \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = - \left( {\sqrt 3 + 2} \right) \\
\]
Or,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) - \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = \left( {1 + \sqrt 3 } \right) \\
\]
Hence, the value of x will be \[\left( {1 + \sqrt 3 } \right)\] as x > 0.
Therefore, the correct answer is option (B).
Note: Whenever we ask such questions, we have to remember that Cosine rule will be used when two sides and included angles are given or when three sides of a triangle is given. The sine rule states that the sides of a triangle are proportional to the sines of the opposite angles, i.e. given as: $\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
Complete step-by-step answer:

Given that,
ABC is a triangle and $\angle ACB = \dfrac{\pi }{6}$
a = length of side opposite to A.
b = length of side opposite to B.
c = length of side opposite to C.
we have to find out the value of x, when $a = {x^2} + x + 1$, $b = {x^2} - 1$ and $c = 2x + 1$
So,
As we know that,
According to the Cosine rule, the square of the length of any side of a triangle equals to the sum of the squares of the length of the other sides minus twice their product multiplied by the cosine of their included angle.
We have given,
$\angle ACB = \dfrac{\pi }{6}$
Therefore, applying the Cosine rule for $\angle C$,
${c^2} = {a^2} + {b^2} - 2ab\cos C$
This can also be written as:
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
Putting the value of a, b and c in the above equation, we will get
$\cos \dfrac{\pi }{6} = \dfrac{{{{\left( {{x^2} + x + 1} \right)}^2} + {{\left( {{x^2} - 1} \right)}^2} - {{\left( {2x + 1} \right)}^2}}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}$
By using the appropriate identities, we will solve this
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^4} + 2{x^3} - 3{x^2} - 2x + 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)\left( {{x^2} - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)}}\]
Dividing \[\left( {{x^2} - 1} \right)\] from numerator and denominator, we will get
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{2\left( {{x^2} + x + 1} \right)}}\]
\[ \Rightarrow \sqrt 3 = \dfrac{{\left( {2{x^2} + 2x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)}}\]
Now taking \[\left( {{x^2} + x + 1} \right)\] to the left side,
\[ \Rightarrow \sqrt 3 \left( {{x^2} + x + 1} \right) = \left( {2{x^2} + 2x - 1} \right)\]
Simplifying this,
\[ \Rightarrow {x^2}\left( {\sqrt 3 - 2} \right) + x\left( {\sqrt 3 - 2} \right) + \left( {\sqrt 3 + 1} \right) = 0\] ……… (i)
Now, we find out the roots of the above quadratic equation using the formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ ……… (ii)
Comparing equation (i) with $a{x^2} + bx + c = 0$, we will get
$a = b = \sqrt 3 - 2$ and $c = \sqrt 3 + 1$
Putting these values in equation (ii),
\[
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {{{\left( {\sqrt 3 - 2} \right)}^2} - 4\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 + 1} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{ - \left( {\sqrt 3 - 2} \right) \pm \sqrt {\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 - 2 - 4\sqrt 3 - 4} \right)} }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\Rightarrow x = \dfrac{{\left( {2 - \sqrt 3 } \right) \pm \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} \\
\]
Now, we get 2 values of x,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) + \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{1}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = - \left( {\sqrt 3 + 2} \right) \\
\]
Or,
\[x = \dfrac{{\left( {2 - \sqrt 3 } \right) - \sqrt 3 }}{{2\left( {\sqrt 3 - 2} \right)}} = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}}\],
Rationalising it,
\[
x = \dfrac{{\left( {1 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 - 2} \right)}} \times \dfrac{{\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 + 2} \right)}} \\
x = \left( {1 + \sqrt 3 } \right) \\
\]
Hence, the value of x will be \[\left( {1 + \sqrt 3 } \right)\] as x > 0.
Therefore, the correct answer is option (B).
Note: Whenever we ask such questions, we have to remember that Cosine rule will be used when two sides and included angles are given or when three sides of a triangle is given. The sine rule states that the sides of a triangle are proportional to the sines of the opposite angles, i.e. given as: $\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$

Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
