
Let A (4, – 4) and B (9, 6) be the point on the parabola, \[{{y}^{2}}=4x.\] Let C be chosen the arc AOB of the parabola, where O is the origin, such that the area of triangle ACB is maximum. Then, the area (in square units) of triangle ACB is:
\[\left( a \right)31\dfrac{3}{4}\]
\[\left( b \right)32\]
\[\left( c \right)30\dfrac{1}{2}\]
\[\left( d \right)31\dfrac{1}{4}\]
Answer
590.1k+ views
Hint: We are given a parabola \[{{y}^{2}}=4x.\] We can see that it is a parabola symmetric to the x-axis. We will assume that point C is at a location (x, y). Now, we know the formula of the area of the triangle, \[\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\] to find the area of triangle ACB. For the maximum area, \[\dfrac{d\left( \text{Area} \right)}{dx}\] must be zero. We will compute the derivative of the area to compare it to zero which will give us the point of maxima. Then putting \[x=\dfrac{1}{4}\] we will get the maximum area.
Complete step-by-step solution:
We are given a parabola defined as \[{{y}^{2}}=4x.\] We know that the parabola \[{{y}^{2}}=4ax\] is the parabola which is symmetric to the x-axis. So, our parabola \[{{y}^{2}}=4x\] is symmetric to the x-axis. Also, we have A (4, – 4) and B (9, 6) lie on the parabola.
We are asked to find C that lies on the curve AOB of the parabola such that area of triangle ACB is maximum. Let us assume the point C has coordinates as (x, y). So, we have,
As C (x, y) lies on the parabola \[{{y}^{2}}=4x\] so it must satisfy the equation of the parabola.
\[\Rightarrow {{y}^{2}}=4x\]
\[\Rightarrow y=2\sqrt{x}\]
So our point C (x, y) can be written as \[C\left( x,2\sqrt{x} \right).\] Now, for triangle ACB, we have the coordinate as \[A\left( 4,-4 \right),B\left( 9,6 \right),C\left( x,2\sqrt{x} \right).\] We know that the area of the triangle is given as,
\[\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]
As we have,
\[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 4,-4 \right)\]
\[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 9,6 \right)\]
\[\left( {{x}_{3}},{{y}_{3}} \right)=\left( x,2\sqrt{x} \right)\]
So, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 4\left( 6-2\sqrt{x} \right)+9\left( 2\sqrt{x}-\left( -4 \right) \right)+x\left( -4-6 \right) \right]\]
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 24-8\sqrt{x}+18\sqrt{x}+36-10x \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
Now, as we are looking for a maximum area, so we will find the critical point. To do so, we will differentiate the area with respect to x. So,
\[\dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( \dfrac{60+10\sqrt{x}-10x}{2} \right)}{dx}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30+5\sqrt{x}-5x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30 \right)}{dx}+\dfrac{d\left( 5\sqrt{x} \right)}{dx}-\dfrac{d\left( 5x \right)}{dx}\]
After deriving, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{5}{2\sqrt{x}}-5\]
For maximum area,
\[\dfrac{d\left( \text{Area} \right)}{dx}=0\]
\[\Rightarrow \dfrac{5}{2\sqrt{x}}-5=0\]
Solving for x, we get,
\[\Rightarrow 5=5\times \left( 2\sqrt{x} \right)\]
\[\Rightarrow \sqrt{x}=\dfrac{1}{2}\]
Squaring both the sides, we get,
\[\Rightarrow x=\dfrac{1}{4}\]
So, we get the maximum area will occur at \[x=\dfrac{1}{4}.\]
Now, putting \[x=\dfrac{1}{4}\] in the value of the area as
\[\text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
So,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+10\sqrt{\dfrac{1}{4}}-10\times \dfrac{1}{4} \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+\dfrac{10}{2}-\dfrac{10}{4} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ \dfrac{125}{2} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{125}{4}\]
Now, changing it to mixed fraction, we get,
\[\Rightarrow \text{Maximum Area}=31\dfrac{1}{4}sq.units\]
Hence, option (d) is the right answer.
Note: The derivative of \[{{x}^{n}}\] is given as \[n{{x}^{n-1}}\] and the derivative of \[\sqrt{x}\] is also found using this formula. \[\sqrt{x}\] can be written as \[{{x}^{\dfrac{1}{2}}}\] that means, we have \[n=\dfrac{1}{2}.\] So,
\[\dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}\]
Applying the same formula, we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}\]
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}\]
As, \[{{a}^{-b}}=\dfrac{1}{{{a}^{b}}},\] so we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2{{x}^{\dfrac{1}{2}}}}\]
Now, again, \[{{x}^{\dfrac{1}{2}}}=\sqrt{x},\] So,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2\sqrt{x}}\]
Complete step-by-step solution:
We are given a parabola defined as \[{{y}^{2}}=4x.\] We know that the parabola \[{{y}^{2}}=4ax\] is the parabola which is symmetric to the x-axis. So, our parabola \[{{y}^{2}}=4x\] is symmetric to the x-axis. Also, we have A (4, – 4) and B (9, 6) lie on the parabola.
We are asked to find C that lies on the curve AOB of the parabola such that area of triangle ACB is maximum. Let us assume the point C has coordinates as (x, y). So, we have,
As C (x, y) lies on the parabola \[{{y}^{2}}=4x\] so it must satisfy the equation of the parabola.
\[\Rightarrow {{y}^{2}}=4x\]
\[\Rightarrow y=2\sqrt{x}\]
So our point C (x, y) can be written as \[C\left( x,2\sqrt{x} \right).\] Now, for triangle ACB, we have the coordinate as \[A\left( 4,-4 \right),B\left( 9,6 \right),C\left( x,2\sqrt{x} \right).\] We know that the area of the triangle is given as,
\[\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]
As we have,
\[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 4,-4 \right)\]
\[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 9,6 \right)\]
\[\left( {{x}_{3}},{{y}_{3}} \right)=\left( x,2\sqrt{x} \right)\]
So, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 4\left( 6-2\sqrt{x} \right)+9\left( 2\sqrt{x}-\left( -4 \right) \right)+x\left( -4-6 \right) \right]\]
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 24-8\sqrt{x}+18\sqrt{x}+36-10x \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
Now, as we are looking for a maximum area, so we will find the critical point. To do so, we will differentiate the area with respect to x. So,
\[\dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( \dfrac{60+10\sqrt{x}-10x}{2} \right)}{dx}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30+5\sqrt{x}-5x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30 \right)}{dx}+\dfrac{d\left( 5\sqrt{x} \right)}{dx}-\dfrac{d\left( 5x \right)}{dx}\]
After deriving, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{5}{2\sqrt{x}}-5\]
For maximum area,
\[\dfrac{d\left( \text{Area} \right)}{dx}=0\]
\[\Rightarrow \dfrac{5}{2\sqrt{x}}-5=0\]
Solving for x, we get,
\[\Rightarrow 5=5\times \left( 2\sqrt{x} \right)\]
\[\Rightarrow \sqrt{x}=\dfrac{1}{2}\]
Squaring both the sides, we get,
\[\Rightarrow x=\dfrac{1}{4}\]
So, we get the maximum area will occur at \[x=\dfrac{1}{4}.\]
Now, putting \[x=\dfrac{1}{4}\] in the value of the area as
\[\text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
So,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+10\sqrt{\dfrac{1}{4}}-10\times \dfrac{1}{4} \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+\dfrac{10}{2}-\dfrac{10}{4} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ \dfrac{125}{2} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{125}{4}\]
Now, changing it to mixed fraction, we get,
\[\Rightarrow \text{Maximum Area}=31\dfrac{1}{4}sq.units\]
Hence, option (d) is the right answer.
Note: The derivative of \[{{x}^{n}}\] is given as \[n{{x}^{n-1}}\] and the derivative of \[\sqrt{x}\] is also found using this formula. \[\sqrt{x}\] can be written as \[{{x}^{\dfrac{1}{2}}}\] that means, we have \[n=\dfrac{1}{2}.\] So,
\[\dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}\]
Applying the same formula, we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}\]
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}\]
As, \[{{a}^{-b}}=\dfrac{1}{{{a}^{b}}},\] so we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2{{x}^{\dfrac{1}{2}}}}\]
Now, again, \[{{x}^{\dfrac{1}{2}}}=\sqrt{x},\] So,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2\sqrt{x}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

