
Let A (4, – 4) and B (9, 6) be the point on the parabola, \[{{y}^{2}}=4x.\] Let C be chosen the arc AOB of the parabola, where O is the origin, such that the area of triangle ACB is maximum. Then, the area (in square units) of triangle ACB is:
\[\left( a \right)31\dfrac{3}{4}\]
\[\left( b \right)32\]
\[\left( c \right)30\dfrac{1}{2}\]
\[\left( d \right)31\dfrac{1}{4}\]
Answer
576.3k+ views
Hint: We are given a parabola \[{{y}^{2}}=4x.\] We can see that it is a parabola symmetric to the x-axis. We will assume that point C is at a location (x, y). Now, we know the formula of the area of the triangle, \[\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\] to find the area of triangle ACB. For the maximum area, \[\dfrac{d\left( \text{Area} \right)}{dx}\] must be zero. We will compute the derivative of the area to compare it to zero which will give us the point of maxima. Then putting \[x=\dfrac{1}{4}\] we will get the maximum area.
Complete step-by-step solution:
We are given a parabola defined as \[{{y}^{2}}=4x.\] We know that the parabola \[{{y}^{2}}=4ax\] is the parabola which is symmetric to the x-axis. So, our parabola \[{{y}^{2}}=4x\] is symmetric to the x-axis. Also, we have A (4, – 4) and B (9, 6) lie on the parabola.
We are asked to find C that lies on the curve AOB of the parabola such that area of triangle ACB is maximum. Let us assume the point C has coordinates as (x, y). So, we have,
As C (x, y) lies on the parabola \[{{y}^{2}}=4x\] so it must satisfy the equation of the parabola.
\[\Rightarrow {{y}^{2}}=4x\]
\[\Rightarrow y=2\sqrt{x}\]
So our point C (x, y) can be written as \[C\left( x,2\sqrt{x} \right).\] Now, for triangle ACB, we have the coordinate as \[A\left( 4,-4 \right),B\left( 9,6 \right),C\left( x,2\sqrt{x} \right).\] We know that the area of the triangle is given as,
\[\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]
As we have,
\[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 4,-4 \right)\]
\[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 9,6 \right)\]
\[\left( {{x}_{3}},{{y}_{3}} \right)=\left( x,2\sqrt{x} \right)\]
So, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 4\left( 6-2\sqrt{x} \right)+9\left( 2\sqrt{x}-\left( -4 \right) \right)+x\left( -4-6 \right) \right]\]
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 24-8\sqrt{x}+18\sqrt{x}+36-10x \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
Now, as we are looking for a maximum area, so we will find the critical point. To do so, we will differentiate the area with respect to x. So,
\[\dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( \dfrac{60+10\sqrt{x}-10x}{2} \right)}{dx}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30+5\sqrt{x}-5x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30 \right)}{dx}+\dfrac{d\left( 5\sqrt{x} \right)}{dx}-\dfrac{d\left( 5x \right)}{dx}\]
After deriving, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{5}{2\sqrt{x}}-5\]
For maximum area,
\[\dfrac{d\left( \text{Area} \right)}{dx}=0\]
\[\Rightarrow \dfrac{5}{2\sqrt{x}}-5=0\]
Solving for x, we get,
\[\Rightarrow 5=5\times \left( 2\sqrt{x} \right)\]
\[\Rightarrow \sqrt{x}=\dfrac{1}{2}\]
Squaring both the sides, we get,
\[\Rightarrow x=\dfrac{1}{4}\]
So, we get the maximum area will occur at \[x=\dfrac{1}{4}.\]
Now, putting \[x=\dfrac{1}{4}\] in the value of the area as
\[\text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
So,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+10\sqrt{\dfrac{1}{4}}-10\times \dfrac{1}{4} \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+\dfrac{10}{2}-\dfrac{10}{4} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ \dfrac{125}{2} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{125}{4}\]
Now, changing it to mixed fraction, we get,
\[\Rightarrow \text{Maximum Area}=31\dfrac{1}{4}sq.units\]
Hence, option (d) is the right answer.
Note: The derivative of \[{{x}^{n}}\] is given as \[n{{x}^{n-1}}\] and the derivative of \[\sqrt{x}\] is also found using this formula. \[\sqrt{x}\] can be written as \[{{x}^{\dfrac{1}{2}}}\] that means, we have \[n=\dfrac{1}{2}.\] So,
\[\dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}\]
Applying the same formula, we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}\]
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}\]
As, \[{{a}^{-b}}=\dfrac{1}{{{a}^{b}}},\] so we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2{{x}^{\dfrac{1}{2}}}}\]
Now, again, \[{{x}^{\dfrac{1}{2}}}=\sqrt{x},\] So,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2\sqrt{x}}\]
Complete step-by-step solution:
We are given a parabola defined as \[{{y}^{2}}=4x.\] We know that the parabola \[{{y}^{2}}=4ax\] is the parabola which is symmetric to the x-axis. So, our parabola \[{{y}^{2}}=4x\] is symmetric to the x-axis. Also, we have A (4, – 4) and B (9, 6) lie on the parabola.
We are asked to find C that lies on the curve AOB of the parabola such that area of triangle ACB is maximum. Let us assume the point C has coordinates as (x, y). So, we have,
As C (x, y) lies on the parabola \[{{y}^{2}}=4x\] so it must satisfy the equation of the parabola.
\[\Rightarrow {{y}^{2}}=4x\]
\[\Rightarrow y=2\sqrt{x}\]
So our point C (x, y) can be written as \[C\left( x,2\sqrt{x} \right).\] Now, for triangle ACB, we have the coordinate as \[A\left( 4,-4 \right),B\left( 9,6 \right),C\left( x,2\sqrt{x} \right).\] We know that the area of the triangle is given as,
\[\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]\]
As we have,
\[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 4,-4 \right)\]
\[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 9,6 \right)\]
\[\left( {{x}_{3}},{{y}_{3}} \right)=\left( x,2\sqrt{x} \right)\]
So, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 4\left( 6-2\sqrt{x} \right)+9\left( 2\sqrt{x}-\left( -4 \right) \right)+x\left( -4-6 \right) \right]\]
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 24-8\sqrt{x}+18\sqrt{x}+36-10x \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
Now, as we are looking for a maximum area, so we will find the critical point. To do so, we will differentiate the area with respect to x. So,
\[\dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( \dfrac{60+10\sqrt{x}-10x}{2} \right)}{dx}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30+5\sqrt{x}-5x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30 \right)}{dx}+\dfrac{d\left( 5\sqrt{x} \right)}{dx}-\dfrac{d\left( 5x \right)}{dx}\]
After deriving, we get,
\[\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{5}{2\sqrt{x}}-5\]
For maximum area,
\[\dfrac{d\left( \text{Area} \right)}{dx}=0\]
\[\Rightarrow \dfrac{5}{2\sqrt{x}}-5=0\]
Solving for x, we get,
\[\Rightarrow 5=5\times \left( 2\sqrt{x} \right)\]
\[\Rightarrow \sqrt{x}=\dfrac{1}{2}\]
Squaring both the sides, we get,
\[\Rightarrow x=\dfrac{1}{4}\]
So, we get the maximum area will occur at \[x=\dfrac{1}{4}.\]
Now, putting \[x=\dfrac{1}{4}\] in the value of the area as
\[\text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]\]
So,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+10\sqrt{\dfrac{1}{4}}-10\times \dfrac{1}{4} \right]\]
Simplifying further, we get,
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+\dfrac{10}{2}-\dfrac{10}{4} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ \dfrac{125}{2} \right]\]
\[\Rightarrow \text{Maximum Area}=\dfrac{125}{4}\]
Now, changing it to mixed fraction, we get,
\[\Rightarrow \text{Maximum Area}=31\dfrac{1}{4}sq.units\]
Hence, option (d) is the right answer.
Note: The derivative of \[{{x}^{n}}\] is given as \[n{{x}^{n-1}}\] and the derivative of \[\sqrt{x}\] is also found using this formula. \[\sqrt{x}\] can be written as \[{{x}^{\dfrac{1}{2}}}\] that means, we have \[n=\dfrac{1}{2}.\] So,
\[\dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}\]
Applying the same formula, we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}\]
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}\]
As, \[{{a}^{-b}}=\dfrac{1}{{{a}^{b}}},\] so we get,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2{{x}^{\dfrac{1}{2}}}}\]
Now, again, \[{{x}^{\dfrac{1}{2}}}=\sqrt{x},\] So,
\[\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2\sqrt{x}}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

