
What is the least three digit number, which is multiple of $6$?
Find the sum of all three digit numbers which are multiple of $6$ ?
Answer
605.7k+ views
Hint: Here we get the three digit numbers which are multiple of 6 in the form of AP series .To find the sum of digits use the formula
${S_n} = \dfrac{n}{2}({\text{first term}} + {\text{last term}})$
We know that least three digit number is $100$
If we divided $100$ by $6$ we get remainder as $4$
We know that greatest two digit number that is multiple of $6$=$100 - 4 = 96$
Now the least three digit number which is multiple of $6$ =$96 + 6 = 102$
From this we can say that the least three digit number which is multiple of $6$ is $102$
To find the sum of all three digit numbers that are multiple of $6$
Let us add $6$to the first which mean least three digit number $102$ and lets continue the processing adding ‘$6$’ to the resultant number to get next numbers.
Then the next number will be $108,114,120.....$
Then series is $102,108,114,120....$
The above series is of AP where the first term a=$102$, d=$6$
To find the sum of the numbers we have to find the n value
We know that ${n^{th}}$of AP is ${a_n} = a + (n - 1)d$
And again here we need the ${n^{th}}$term value nothing but maximum value that is multiple of $6$
We know that greatest three digit number =$999$
So here if we divide $999$ with $6$ the remainder will be $3$
So to get the maximum three digit number which is multiple of $6$ let us subtract $3$ from $999$ which gives the $3$-digit number that is multiple of$6$.
$ \Rightarrow 999 - 3 = 996$
So here the maximum $3$-digit number that is multiple of $6$ is $996$.
Then here ${a_n} = 996$
Now let us find n value
$
\Rightarrow {a_n} = a + (n - 1)d \\
\Rightarrow 996 = 102 + (n - 1)6 \\
\Rightarrow (n - 1)6 = 894 \\
\Rightarrow n - 1 = 149 \\
\Rightarrow n = 150 \\
\therefore n = 150 \\
$
From this we can say there are total $150$ numbers in the series that are multiple by $6$
Sum of the terms$ \Rightarrow $${S_n} = \dfrac{n}{2}({\text{first term}} + {\text{last term}})$
Let us substitute the value
$
\Rightarrow {S_n} = \dfrac{{150}}{2}(102 + 996) \\
\Rightarrow {S_n} = 75 \times 1098 \\
\Rightarrow {S_n} = 82350 \\
$
Therefore sum of all three digit numbers which are multiple of $6$=$82350$
Note: Make note that to find the sum of all three digit numbers multiple of $6$ it’s important to find the n value. So in this problem we have to find least number that is multiple of 6 and to find sum of number 3 digit numbers that are multiple of 6 we have the how many 3digit numbers are present that are divisible by 6.So we have used nth term of AP to get n value, as the numbers that are multiple of 6 are in AP. And finally we have used the sum of n terms formula to get a sum of numbers that are multiple of 6.
${S_n} = \dfrac{n}{2}({\text{first term}} + {\text{last term}})$
We know that least three digit number is $100$
If we divided $100$ by $6$ we get remainder as $4$
We know that greatest two digit number that is multiple of $6$=$100 - 4 = 96$
Now the least three digit number which is multiple of $6$ =$96 + 6 = 102$
From this we can say that the least three digit number which is multiple of $6$ is $102$
To find the sum of all three digit numbers that are multiple of $6$
Let us add $6$to the first which mean least three digit number $102$ and lets continue the processing adding ‘$6$’ to the resultant number to get next numbers.
Then the next number will be $108,114,120.....$
Then series is $102,108,114,120....$
The above series is of AP where the first term a=$102$, d=$6$
To find the sum of the numbers we have to find the n value
We know that ${n^{th}}$of AP is ${a_n} = a + (n - 1)d$
And again here we need the ${n^{th}}$term value nothing but maximum value that is multiple of $6$
We know that greatest three digit number =$999$
So here if we divide $999$ with $6$ the remainder will be $3$
So to get the maximum three digit number which is multiple of $6$ let us subtract $3$ from $999$ which gives the $3$-digit number that is multiple of$6$.
$ \Rightarrow 999 - 3 = 996$
So here the maximum $3$-digit number that is multiple of $6$ is $996$.
Then here ${a_n} = 996$
Now let us find n value
$
\Rightarrow {a_n} = a + (n - 1)d \\
\Rightarrow 996 = 102 + (n - 1)6 \\
\Rightarrow (n - 1)6 = 894 \\
\Rightarrow n - 1 = 149 \\
\Rightarrow n = 150 \\
\therefore n = 150 \\
$
From this we can say there are total $150$ numbers in the series that are multiple by $6$
Sum of the terms$ \Rightarrow $${S_n} = \dfrac{n}{2}({\text{first term}} + {\text{last term}})$
Let us substitute the value
$
\Rightarrow {S_n} = \dfrac{{150}}{2}(102 + 996) \\
\Rightarrow {S_n} = 75 \times 1098 \\
\Rightarrow {S_n} = 82350 \\
$
Therefore sum of all three digit numbers which are multiple of $6$=$82350$
Note: Make note that to find the sum of all three digit numbers multiple of $6$ it’s important to find the n value. So in this problem we have to find least number that is multiple of 6 and to find sum of number 3 digit numbers that are multiple of 6 we have the how many 3digit numbers are present that are divisible by 6.So we have used nth term of AP to get n value, as the numbers that are multiple of 6 are in AP. And finally we have used the sum of n terms formula to get a sum of numbers that are multiple of 6.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

