
Ionisation energy of $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$is $\text{ 19}\text{.6 }\times \text{ 1}{{\text{0}}^{-\text{18}}}\text{ J ato}{{\text{m}}^{-1}}\text{ }$.The energy of the first stationary state $\text{ }\left( \text{ n = 1 } \right)\text{ }$ of $\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$is:
A) $\text{ 4}\text{.41}\times {{10}^{-16}}\text{ J ato}{{\text{m}}^{-1}}\text{ }$
B) $\text{ }-\text{4}\text{.41}\times {{10}^{-17}}\text{ J ato}{{\text{m}}^{-1}}$
C) $\text{ }-2.\text{2}\times {{10}^{-15}}\text{ J ato}{{\text{m}}^{-1}}$
D) $\text{ 8}\text{.82}\times {{10}^{-17}}\text{ J ato}{{\text{m}}^{-1}}\text{ }$
Answer
571.2k+ views
Hint: the ionization energy is the amount of energy required to knock out the valence shell electron. In simple words, it is the measure of a tendency of an atom to lose its electron. The ionization energy of an atom is related to the atomic number as follows,
$\text{ }{{\text{E}}_{\text{n}}}\text{ = }-{{\text{R}}_{\text{n}}}\dfrac{{{Z}^{2}}\text{hc}}{{{\text{n}}^{\text{2}}}}\text{ }$
Where $\text{ }{{\text{E}}_{\text{n}}}\text{ }$ is the energy of the level n, Z is the atomic number, n is the energy level, h is the Planck's constant, c is the velocity of light, and $\text{ }{{\text{R}}_{\text{n}}}\text{ }$ is Rydberg constant. In a stationary energy state, the value of energy level is equal to 1.
Complete step by step solution:
Ionization energy is the amount of energy required by an atom to lose its electron. The atom loses its valence shell electron and acquires the positive charge. The general representation is as follows,
$\text{ A + IE }\to \text{ }{{\text{A}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }$
Where, $\text{ IE }$ is the ionization energy applied to atom A.
We have given the following data:
The helium atom loses its electrons and forms $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$.
The ionization energy of the $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$is equal to the $\text{ 19}\text{.6 }\times \text{ 1}{{\text{0}}^{-\text{18}}}\text{ J ato}{{\text{m}}^{-1}}\text{ }$
We are interested to determine the energy of the first stationary state i.e. $\text{ n = 1 }$ of $\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$ ion.
The ionization energy of an atom is related to the atomic number as follows,
$\text{ }{{\text{E}}_{\text{n}}}\text{ = }-{{\text{R}}_{\text{n}}}\dfrac{{{Z}^{2}}\text{hc}}{{{\text{n}}^{\text{2}}}}\text{ }$
Where $\text{ }{{\text{E}}_{\text{n}}}\text{ }$ is the energy of the level n, Z is the atomic number, n is the energy level, h is the Planck's constant, c is the velocity of light, and $\text{ }{{\text{R}}_{\text{n}}}\text{ }$ is Rydberg constant.
Since, h, c and $\text{ }{{\text{R}}_{\text{n}}}\text{ }$are constant, the ionization energy is directly related to the atomic number and inversely related to the number of energy levels.
For the first stationary state i.e. when $\text{ n = 1 }$the ionization energy of the $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$written as,
$\text{ IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}\text{ }\propto \text{ }\dfrac{{{\left( {{Z}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}{{{\left( {{\text{n}}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}\text{ }$ (1)
Similarly, for$\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$, the ionization energy can be written as,
$\text{ IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ }\propto \text{ }\dfrac{{{\left( {{Z}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}{{{\left( {{\text{n}}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}\text{ }$ (2)
Take the ratio of (1) and (2), we have,
$\text{ }\dfrac{\text{IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}}{\text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}}\text{ = }\dfrac{{{\left( {{Z}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}{{{\left( {{\text{n}}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}\text{ }\times \text{ }\dfrac{{{\left( {{\text{n}}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}{{{\left( {{Z}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}\text{ }$
Since we are interested in the ionization energy at the stationary level .i.e. at $\text{ n = 1 }$. The equation becomes,
$\text{ }\dfrac{\text{IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}}{\text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}}\text{ = }\dfrac{{{\left( {{Z}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}{{{\left( {{Z}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}\text{ }$
We know that the atomic number of $\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$is 3 and for $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$is is 2 and ionization energy of $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$. Thus on substituting the values we have,
$\begin{align}
& \text{ }\dfrac{\text{IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}}{\text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}}\text{ = }\dfrac{{{\left( 2 \right)}^{2}}}{{{\left( 3 \right)}^{2}}}\text{ = }\dfrac{4}{9} \\
& \Rightarrow \text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ = IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}\text{ }\times \text{ }\dfrac{9}{4} \\
& \Rightarrow \text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ = }\left( 19.6\times {{10}^{-18}} \right)\text{ }\times \text{ }\dfrac{9}{4} \\
& \therefore \text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ = 4}\text{.41}\times {{10}^{-17}}\text{ J ato}{{\text{m}}^{-1}}\text{ } \\
\end{align}$
Therefore, the ionization energy of $\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$ the ion stationary state is equal to.
$\text{ Energy in stationary state = }-\text{IE = }-\text{ 4}\text{.41}\times {{10}^{-17}}\text{ J ato}{{\text{m}}^{-1}}\text{ }$. As, the energy is released during the ionization hence it is always negative.
Hence, (B) is the correct option.
Note: The ionization energy is related to the atomic number ‘Z’ and the energy level ‘n’.It is clear that the atomic number is directly related to the atomic number, thus with increases in the Z, the ionization energy increases and decreases with the increase in the energy level or with the addition of energy shell.
$\text{ Ionisation energy }\propto \text{ }\dfrac{\text{Atomic number (}Z)}{\text{energy level(n)}}\text{ }$
Therefore, the ionization energy is found to increase as we move from left to right and decreases as we move top to bottom in the periodic table.
$\text{ }{{\text{E}}_{\text{n}}}\text{ = }-{{\text{R}}_{\text{n}}}\dfrac{{{Z}^{2}}\text{hc}}{{{\text{n}}^{\text{2}}}}\text{ }$
Where $\text{ }{{\text{E}}_{\text{n}}}\text{ }$ is the energy of the level n, Z is the atomic number, n is the energy level, h is the Planck's constant, c is the velocity of light, and $\text{ }{{\text{R}}_{\text{n}}}\text{ }$ is Rydberg constant. In a stationary energy state, the value of energy level is equal to 1.
Complete step by step solution:
Ionization energy is the amount of energy required by an atom to lose its electron. The atom loses its valence shell electron and acquires the positive charge. The general representation is as follows,
$\text{ A + IE }\to \text{ }{{\text{A}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }$
Where, $\text{ IE }$ is the ionization energy applied to atom A.
We have given the following data:
The helium atom loses its electrons and forms $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$.
The ionization energy of the $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$is equal to the $\text{ 19}\text{.6 }\times \text{ 1}{{\text{0}}^{-\text{18}}}\text{ J ato}{{\text{m}}^{-1}}\text{ }$
We are interested to determine the energy of the first stationary state i.e. $\text{ n = 1 }$ of $\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$ ion.
The ionization energy of an atom is related to the atomic number as follows,
$\text{ }{{\text{E}}_{\text{n}}}\text{ = }-{{\text{R}}_{\text{n}}}\dfrac{{{Z}^{2}}\text{hc}}{{{\text{n}}^{\text{2}}}}\text{ }$
Where $\text{ }{{\text{E}}_{\text{n}}}\text{ }$ is the energy of the level n, Z is the atomic number, n is the energy level, h is the Planck's constant, c is the velocity of light, and $\text{ }{{\text{R}}_{\text{n}}}\text{ }$ is Rydberg constant.
Since, h, c and $\text{ }{{\text{R}}_{\text{n}}}\text{ }$are constant, the ionization energy is directly related to the atomic number and inversely related to the number of energy levels.
For the first stationary state i.e. when $\text{ n = 1 }$the ionization energy of the $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$written as,
$\text{ IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}\text{ }\propto \text{ }\dfrac{{{\left( {{Z}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}{{{\left( {{\text{n}}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}\text{ }$ (1)
Similarly, for$\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$, the ionization energy can be written as,
$\text{ IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ }\propto \text{ }\dfrac{{{\left( {{Z}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}{{{\left( {{\text{n}}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}\text{ }$ (2)
Take the ratio of (1) and (2), we have,
$\text{ }\dfrac{\text{IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}}{\text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}}\text{ = }\dfrac{{{\left( {{Z}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}{{{\left( {{\text{n}}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}\text{ }\times \text{ }\dfrac{{{\left( {{\text{n}}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}{{{\left( {{Z}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}\text{ }$
Since we are interested in the ionization energy at the stationary level .i.e. at $\text{ n = 1 }$. The equation becomes,
$\text{ }\dfrac{\text{IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}}{\text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}}\text{ = }\dfrac{{{\left( {{Z}_{\text{H}{{\text{e}}^{\text{+}}}}} \right)}^{2}}}{{{\left( {{Z}_{_{\text{L}{{\text{i}}^{\text{2+}}}}}} \right)}^{2}}}\text{ }$
We know that the atomic number of $\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$is 3 and for $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$is is 2 and ionization energy of $\text{ H}{{\text{e}}^{\text{+}}}\text{ }$. Thus on substituting the values we have,
$\begin{align}
& \text{ }\dfrac{\text{IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}}{\text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}}\text{ = }\dfrac{{{\left( 2 \right)}^{2}}}{{{\left( 3 \right)}^{2}}}\text{ = }\dfrac{4}{9} \\
& \Rightarrow \text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ = IE}{{\text{ }}_{\text{H}{{\text{e}}^{\text{+}}}}}\text{ }\times \text{ }\dfrac{9}{4} \\
& \Rightarrow \text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ = }\left( 19.6\times {{10}^{-18}} \right)\text{ }\times \text{ }\dfrac{9}{4} \\
& \therefore \text{IE}{{\text{ }}_{\text{L}{{\text{i}}^{\text{2+}}}}}\text{ = 4}\text{.41}\times {{10}^{-17}}\text{ J ato}{{\text{m}}^{-1}}\text{ } \\
\end{align}$
Therefore, the ionization energy of $\text{ L}{{\text{i}}^{\text{2+}}}\text{ }$ the ion stationary state is equal to.
$\text{ Energy in stationary state = }-\text{IE = }-\text{ 4}\text{.41}\times {{10}^{-17}}\text{ J ato}{{\text{m}}^{-1}}\text{ }$. As, the energy is released during the ionization hence it is always negative.
Hence, (B) is the correct option.
Note: The ionization energy is related to the atomic number ‘Z’ and the energy level ‘n’.It is clear that the atomic number is directly related to the atomic number, thus with increases in the Z, the ionization energy increases and decreases with the increase in the energy level or with the addition of energy shell.
$\text{ Ionisation energy }\propto \text{ }\dfrac{\text{Atomic number (}Z)}{\text{energy level(n)}}\text{ }$
Therefore, the ionization energy is found to increase as we move from left to right and decreases as we move top to bottom in the periodic table.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

