
Integrate ln (sin x) from 0 to $\dfrac{\pi }{2}.$
Answer
580.2k+ views
Hint:Here, use properties of definite integrals to convert sin x to cos x and add the two integrals. Using properties of logarithm, simplify the integral. Also using properties of trigonometric functions simplify the integral to get the result
Complete step-by-step answer:
Let $I = \int_0^{\dfrac{\pi }{2}} {\ln (\sin x)dx} $ …(i)
$ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\ln \left[ {\sin \left( {\dfrac{\pi }{2} - x} \right)} \right]} dx$ [Using property of definite integrals]
[Property of definite integral: In a definite integral, $\int_0^a {f(x)dx} = \int_0^a {f(x - a)dx} $]
$ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\ln (\cos x)dx} $ …(ii) [since, sin $\left( {\dfrac{\pi }{2} - x} \right)$ = cos x]
Adding equations (i) and (ii), we get
$2I = \int_0^{\dfrac{\pi }{2}} {\ln (\sin x)dx + } \int_0^{\dfrac{\pi }{2}} {\ln (\cos x)dx} $
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\left[ {\ln (\sin x) + \ln (\cos x)} \right]} dx$ [Using property of integrals]
[Property of definite integrals: $\int_0^{\dfrac{\pi }{2}} {f(x)dx} + \int_0^{\dfrac{\pi }{2}} {g(x)dx} = \int_0^{\dfrac{\pi }{2}} {\left[ {f(x) + g(x)} \right]dx} $]
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln (\sin x \times \cos x)dx} $
[Property of logarithm: ln (a) +ln (b) = ln (ab)]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln \left[ {\dfrac{{2\sin x \times \cos x}}{2}} \right]dx} \]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln \left[ {\dfrac{{\sin 2x}}{2}} \right]dx} \] [Since, 2 × sinx × cosx = sin 2x]
[Applying logarithm property: $\log \left( {\dfrac{a}{b}} \right) = \log a - \log b$]
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\left[ {\ln (\sin 2x) - \ln 2} \right]dx} $
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln \sin 2x} dx + \int_0^{\dfrac{\pi }{2}} {\ln 2} dx$ …(iii)
Assume, ${I_1} = \int_0^{\dfrac{\pi }{2}} {\ln \sin 2x} dx$
Putting 2x = y
For x = 0, y = 0
For $x = \dfrac{\pi }{2},y = \pi $
Differentiating both sides of (2x = y) with respect to x, we get
$2 = \dfrac{{dy}}{{dx}} \Rightarrow dx = \dfrac{{dy}}{2}$
Now, ${I_1} = \int_0^{\dfrac{\pi }{2}} {\ln (\sin y)\dfrac{{dy}}{2}} = \dfrac{1}{2}\int_0^{\dfrac{\pi }{2}} {\ln (\sin y)dy} $
${I_1} = \dfrac{1}{2}I$ [Since, $\int_a^b {f(x)dx} = \int_a^b {f(y)dy} $]
Putting value of ${I_1}$in equation (iii), we have
\[2I = \dfrac{I}{2} + \ln 2\mathop {\left[ x \right]}\nolimits_0^{\dfrac{\pi }{2}} \] $\left[ {\because \int_0^{\dfrac{\pi }{2}} {\ln 2dx = \ln 2\mathop {\left[ x \right]}\nolimits_0^{\dfrac{\pi }{2}} } } \right]$
$ \Rightarrow 2I - \dfrac{I}{2} = \dfrac{\pi }{2}\ln 2$
Separating I and constant parts
$ \Rightarrow \dfrac{{3I}}{2} = \dfrac{\pi }{2}\ln 2$
Multiplying both sides by 2
$ \Rightarrow 3I = \pi \ln 2$
$ \Rightarrow I = \dfrac{\pi }{3}\ln 2$
Note:In these types of questions, always use properties of definite integral do not go for actual integration steps. Try to use trigonometric identities, properties of definite integrals and logarithmic properties to simplify the given problem. Always careful while doing the steps and using properties. If we solve these types of integral problems directly it becomes much more complicated, and it may happen that you will not get the final results. These properties can be used only for definite integrals not for indefinite integrals. For doing these types of problems brush up trigonometric identities, and should also be aware about logarithmic basic properties, without which you will not be able to solve the problem.
Complete step-by-step answer:
Let $I = \int_0^{\dfrac{\pi }{2}} {\ln (\sin x)dx} $ …(i)
$ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\ln \left[ {\sin \left( {\dfrac{\pi }{2} - x} \right)} \right]} dx$ [Using property of definite integrals]
[Property of definite integral: In a definite integral, $\int_0^a {f(x)dx} = \int_0^a {f(x - a)dx} $]
$ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\ln (\cos x)dx} $ …(ii) [since, sin $\left( {\dfrac{\pi }{2} - x} \right)$ = cos x]
Adding equations (i) and (ii), we get
$2I = \int_0^{\dfrac{\pi }{2}} {\ln (\sin x)dx + } \int_0^{\dfrac{\pi }{2}} {\ln (\cos x)dx} $
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\left[ {\ln (\sin x) + \ln (\cos x)} \right]} dx$ [Using property of integrals]
[Property of definite integrals: $\int_0^{\dfrac{\pi }{2}} {f(x)dx} + \int_0^{\dfrac{\pi }{2}} {g(x)dx} = \int_0^{\dfrac{\pi }{2}} {\left[ {f(x) + g(x)} \right]dx} $]
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln (\sin x \times \cos x)dx} $
[Property of logarithm: ln (a) +ln (b) = ln (ab)]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln \left[ {\dfrac{{2\sin x \times \cos x}}{2}} \right]dx} \]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln \left[ {\dfrac{{\sin 2x}}{2}} \right]dx} \] [Since, 2 × sinx × cosx = sin 2x]
[Applying logarithm property: $\log \left( {\dfrac{a}{b}} \right) = \log a - \log b$]
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\left[ {\ln (\sin 2x) - \ln 2} \right]dx} $
$ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\ln \sin 2x} dx + \int_0^{\dfrac{\pi }{2}} {\ln 2} dx$ …(iii)
Assume, ${I_1} = \int_0^{\dfrac{\pi }{2}} {\ln \sin 2x} dx$
Putting 2x = y
For x = 0, y = 0
For $x = \dfrac{\pi }{2},y = \pi $
Differentiating both sides of (2x = y) with respect to x, we get
$2 = \dfrac{{dy}}{{dx}} \Rightarrow dx = \dfrac{{dy}}{2}$
Now, ${I_1} = \int_0^{\dfrac{\pi }{2}} {\ln (\sin y)\dfrac{{dy}}{2}} = \dfrac{1}{2}\int_0^{\dfrac{\pi }{2}} {\ln (\sin y)dy} $
${I_1} = \dfrac{1}{2}I$ [Since, $\int_a^b {f(x)dx} = \int_a^b {f(y)dy} $]
Putting value of ${I_1}$in equation (iii), we have
\[2I = \dfrac{I}{2} + \ln 2\mathop {\left[ x \right]}\nolimits_0^{\dfrac{\pi }{2}} \] $\left[ {\because \int_0^{\dfrac{\pi }{2}} {\ln 2dx = \ln 2\mathop {\left[ x \right]}\nolimits_0^{\dfrac{\pi }{2}} } } \right]$
$ \Rightarrow 2I - \dfrac{I}{2} = \dfrac{\pi }{2}\ln 2$
Separating I and constant parts
$ \Rightarrow \dfrac{{3I}}{2} = \dfrac{\pi }{2}\ln 2$
Multiplying both sides by 2
$ \Rightarrow 3I = \pi \ln 2$
$ \Rightarrow I = \dfrac{\pi }{3}\ln 2$
Note:In these types of questions, always use properties of definite integral do not go for actual integration steps. Try to use trigonometric identities, properties of definite integrals and logarithmic properties to simplify the given problem. Always careful while doing the steps and using properties. If we solve these types of integral problems directly it becomes much more complicated, and it may happen that you will not get the final results. These properties can be used only for definite integrals not for indefinite integrals. For doing these types of problems brush up trigonometric identities, and should also be aware about logarithmic basic properties, without which you will not be able to solve the problem.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

