
Integrate \[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} \]
Answer
546.3k+ views
Hint:
We will denote the function inside the parenthesis as a function of \[x\]. We will then differentiate the assumed function such that its derivative is present in the integrand. Then we will apply the appropriate integration formula to obtain the value of the integral.
Formula used:
We will use the following formulas:
1) \[\int {{e^x}[f(x) + f'(x)} ]dx = {e^x}f(x) + c\], where \[f(x)\] is a function of \[x\], \[f'(x)\] is its derivative, and \[c\] is a constant.
2) \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
We have to integrate \[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} \]
We will first use an appropriate function of \[x\] from the integrand, such that its derivative is also present in the integrand.
Let us take \[\dfrac{1}{x}\] as our required function. So,
\[f(x) = \dfrac{1}{x}\]
Let us check if the derivative of \[\dfrac{1}{x}\] is present in the integrand. For this we have to differentiate \[\dfrac{1}{x}\]. Now, \[\dfrac{1}{x} = {x^{ - 1}}\].
Using the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[\begin{array}{l}f'(x) = ( - 1){x^{ - 1 - 1}} = - {x^{ - 2}}\\ \Rightarrow f'(x) = - \dfrac{1}{{{x^2}}}\end{array}\]
We observe that \[ - \dfrac{1}{{{x^2}}}\] is also present in the integrand. Hence, our choice of function is right.
Now, we can write \[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} \] as \[\int {{e^x}\left[ {\dfrac{1}{x} + \left( { - \dfrac{1}{{{x^2}}}} \right)} \right]} dx\], where \[f(x) = \dfrac{1}{x}\] and \[f'(x) = - \dfrac{1}{{{x^2}}}\].
\[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = \int {{e^x}\left[ {\dfrac{1}{x} + \left( { - \dfrac{1}{{{x^2}}}} \right)} \right]} dx\]
Using the formula \[\int {{e^x}[f(x) + f'(x)} ]dx = {e^x}f(x) + c\] to integrate, we have
\[ \Rightarrow \int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + c\]
Note:
We can also solve the above problem by integration by parts method.
\[\int {udv} = uv - \int {vdu} \] ……….\[(A)\]
The integrand \[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} \] can be written as \[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx - \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} } \]……….\[(B)\]
We will apply the integration by parts rule to the integral \[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx} \].
Let us take \[u = \dfrac{1}{x}\] and \[dv = {e^x}dx\].
Now, \[du = - \dfrac{1}{{{x^2}}}dx\] and \[v = \int {dv} = \int {{e^x}dx} \]. This gives \[v = {e^x}\].
Substituting these values in equation \[(A)\], we get
\[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) - \int {{e^x}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} + c\]
On the RHS, the \[( - )\] can be taken out and we can rewrite the above equation as
\[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} \] ………\[(C)\]
Using equation \[(C)\] in equation \[(B)\], we get
\[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} - \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} + c\]
Cancelling out \[\int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} \] on the RHS, we finally get
\[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + c\]
We will denote the function inside the parenthesis as a function of \[x\]. We will then differentiate the assumed function such that its derivative is present in the integrand. Then we will apply the appropriate integration formula to obtain the value of the integral.
Formula used:
We will use the following formulas:
1) \[\int {{e^x}[f(x) + f'(x)} ]dx = {e^x}f(x) + c\], where \[f(x)\] is a function of \[x\], \[f'(x)\] is its derivative, and \[c\] is a constant.
2) \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
We have to integrate \[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} \]
We will first use an appropriate function of \[x\] from the integrand, such that its derivative is also present in the integrand.
Let us take \[\dfrac{1}{x}\] as our required function. So,
\[f(x) = \dfrac{1}{x}\]
Let us check if the derivative of \[\dfrac{1}{x}\] is present in the integrand. For this we have to differentiate \[\dfrac{1}{x}\]. Now, \[\dfrac{1}{x} = {x^{ - 1}}\].
Using the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[\begin{array}{l}f'(x) = ( - 1){x^{ - 1 - 1}} = - {x^{ - 2}}\\ \Rightarrow f'(x) = - \dfrac{1}{{{x^2}}}\end{array}\]
We observe that \[ - \dfrac{1}{{{x^2}}}\] is also present in the integrand. Hence, our choice of function is right.
Now, we can write \[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} \] as \[\int {{e^x}\left[ {\dfrac{1}{x} + \left( { - \dfrac{1}{{{x^2}}}} \right)} \right]} dx\], where \[f(x) = \dfrac{1}{x}\] and \[f'(x) = - \dfrac{1}{{{x^2}}}\].
\[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = \int {{e^x}\left[ {\dfrac{1}{x} + \left( { - \dfrac{1}{{{x^2}}}} \right)} \right]} dx\]
Using the formula \[\int {{e^x}[f(x) + f'(x)} ]dx = {e^x}f(x) + c\] to integrate, we have
\[ \Rightarrow \int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + c\]
Note:
We can also solve the above problem by integration by parts method.
\[\int {udv} = uv - \int {vdu} \] ……….\[(A)\]
The integrand \[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} \] can be written as \[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx - \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} } \]……….\[(B)\]
We will apply the integration by parts rule to the integral \[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx} \].
Let us take \[u = \dfrac{1}{x}\] and \[dv = {e^x}dx\].
Now, \[du = - \dfrac{1}{{{x^2}}}dx\] and \[v = \int {dv} = \int {{e^x}dx} \]. This gives \[v = {e^x}\].
Substituting these values in equation \[(A)\], we get
\[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) - \int {{e^x}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} + c\]
On the RHS, the \[( - )\] can be taken out and we can rewrite the above equation as
\[\int {{e^x}\left( {\dfrac{1}{x}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} \] ………\[(C)\]
Using equation \[(C)\] in equation \[(B)\], we get
\[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} - \int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} + c\]
Cancelling out \[\int {{e^x}\left( {\dfrac{1}{{{x^2}}}} \right)dx} \] on the RHS, we finally get
\[\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)dx} = {e^x}\left( {\dfrac{1}{x}} \right) + c\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

