
In two system of units, the relation between velocity, acceleration and force is given by \[{v_2} = \dfrac{{{v_1}{\varepsilon ^2}}}{t}\], \[{a_2} = {a_1}\varepsilon t\] and \[{F_2} = \dfrac{{{F_1}}}{{\varepsilon t}}\] where \[\varepsilon \] is a constant. Then, in this new system
(A) \[{m_2} = \dfrac{{{m_1}}}{{{\varepsilon ^2}{t^2}}}\]
(B) \[{m_2} = {\varepsilon ^2}{t^2}{m_1}\]
(C) \[{L_2} = \dfrac{{{L_1}{\varepsilon ^3}}}{{{t^3}}}\]
(D) \[{L_2} = \dfrac{{{L_1}{t^3}}}{{{\varepsilon ^3}}}\]
Answer
559.5k+ views
Hint: Express the dimensions of velocity, acceleration and force for two systems of units. Take the ratio of dimension of the first system to that of the second system for velocity, acceleration and force. From the given quantity, rearrange and solve the equations to get the desired answer.
Complete step by step answer:
We have the unit of velocity is m/s. Therefore, the dimensions of velocity is,
\[{v_1} = \left[ {\,{{\text{L}}_1}\,{\text{T}}_1^{ - 1}} \right]\] …… (1)
We can express the dimensions of velocity in other system as follows,
\[{v_2} = \left[ {{{\text{L}}_2}{\text{T}}_2^{ - 1}} \right]\] …… (2)
We have given that,
\[\dfrac{{{v_2}}}{{{v_1}}} = \dfrac{{{\varepsilon ^2}}}{t}\]
Using equation (1) and (2), we can write the above equation as follows,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{\text{T}}_2^{ - 1}} \right]}}{{\left[ {{{\text{L}}_1}\,{\text{T}}_1^{ - 1}} \right]}} = \dfrac{{{\varepsilon ^2}}}{t}\] …… (3)
We know the unit of acceleration is \[m/{s^2}\]. Therefore, we can express the dimensions of acceleration as,
\[{a_1} = \left[ {{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]\]…… (4)
We can express the dimensions of acceleration in other system as follows,
\[{a_2} = \left[ {{{\text{L}}_2}{\text{T}}_2^{ - 2}} \right]\] …… (5)
We have given that,
\[\dfrac{{{a_2}}}{{{a_1}}} = \varepsilon t\]
Using equations (4) and (5), we can write the above equation as,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{\text{T}}_2^{ - 2}} \right]}}{{\left[ {{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]}} = \varepsilon t\] …… (6)
We know the unit of force is \[kg\,m/{s^2}\]. Therefore, we can express the dimensions of force as,
\[{F_1} = \left[ {{{\text{M}}_1}\,{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]\]…… (7)
We can express the dimensions of force in other system as follows,
\[{F_2} = \left[ {{{\text{M}}_2}\,{{\text{L}}_2}\,{\text{T}}_2^{ - 2}} \right]\]…… (8)
We have given that,
\[\dfrac{{{F_2}}}{{{F_1}}} = \dfrac{1}{{\varepsilon t}}\]
Using equations (7) and (8), we can write the above equation as,
\[\dfrac{{\left[ {{{\text{M}}_2}\,{{\text{L}}_2}\,{\text{T}}_2^{ - 2}} \right]}}{{\left[ {{{\text{M}}_1}\,{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]}} = \dfrac{1}{{\varepsilon t}}\] …… (9)
Using equation (6) in the above equation, we get,
\[\left[ {\dfrac{{{{\text{M}}_2}}}{{{{\text{M}}_1}}}} \right]\varepsilon t = \dfrac{1}{{\varepsilon t}}\]
\[ \Rightarrow {{\text{M}}_2} = \dfrac{{{{\text{M}}_1}}}{{{\varepsilon ^2}{t^2}}}\]
So, the option (A) is correct.
From equation (3), we can write,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{{\text{T}}_1}} \right]}}{{\left[ {{{\text{L}}_1}\,{{\text{T}}_2}} \right]}} = \dfrac{{{\varepsilon ^2}}}{t}\]
\[ \Rightarrow \left[ {\dfrac{{{{\text{T}}_{\text{1}}}}}{{{{\text{T}}_{\text{2}}}}}} \right] = \dfrac{{{\varepsilon ^2}}}{t}\left[ {\dfrac{{{{\text{L}}_{\text{1}}}}}{{{{\text{L}}_{\text{2}}}}}} \right]\] ….. (10)
We can write the equation (6) as,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{\text{T}}_1^2} \right]}}{{\left[ {{{\text{L}}_1}\,{\text{T}}_2^2} \right]}} = \varepsilon t\]
Now, substituting equation (10) in the above equation we get,
\[\left[ {\dfrac{{{{\text{L}}_{\text{2}}}}}{{{{\text{L}}_{\text{1}}}}}} \right]\dfrac{{{\varepsilon ^4}}}{{{t^2}}}\left[ {\dfrac{{{\text{L}}_1^2}}{{{\text{L}}_2^2}}} \right] = \varepsilon t\]
\[ \Rightarrow \dfrac{{{{\text{L}}_{\text{2}}}}}{{{{\text{L}}_{\text{1}}}}} = \dfrac{{{\varepsilon ^3}}}{{{t^3}}}\]
\[ \therefore {{\text{L}}_{\text{2}}} = \dfrac{{{{\text{L}}_{\text{1}}}{\varepsilon ^3}}}{{{t^3}}}\]
Therefore, the option (C) is also correct.
So, the correct answer is option (A) and (C).
Note:To answer this type of questions, students should remember the units and dimensions of velocity, acceleration and force. Most of the other physical parameters depend upon these terms. If the unit of the physical parameter does not contain mass term, then the dimensions of this parameter is written without the mass term.
Complete step by step answer:
We have the unit of velocity is m/s. Therefore, the dimensions of velocity is,
\[{v_1} = \left[ {\,{{\text{L}}_1}\,{\text{T}}_1^{ - 1}} \right]\] …… (1)
We can express the dimensions of velocity in other system as follows,
\[{v_2} = \left[ {{{\text{L}}_2}{\text{T}}_2^{ - 1}} \right]\] …… (2)
We have given that,
\[\dfrac{{{v_2}}}{{{v_1}}} = \dfrac{{{\varepsilon ^2}}}{t}\]
Using equation (1) and (2), we can write the above equation as follows,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{\text{T}}_2^{ - 1}} \right]}}{{\left[ {{{\text{L}}_1}\,{\text{T}}_1^{ - 1}} \right]}} = \dfrac{{{\varepsilon ^2}}}{t}\] …… (3)
We know the unit of acceleration is \[m/{s^2}\]. Therefore, we can express the dimensions of acceleration as,
\[{a_1} = \left[ {{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]\]…… (4)
We can express the dimensions of acceleration in other system as follows,
\[{a_2} = \left[ {{{\text{L}}_2}{\text{T}}_2^{ - 2}} \right]\] …… (5)
We have given that,
\[\dfrac{{{a_2}}}{{{a_1}}} = \varepsilon t\]
Using equations (4) and (5), we can write the above equation as,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{\text{T}}_2^{ - 2}} \right]}}{{\left[ {{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]}} = \varepsilon t\] …… (6)
We know the unit of force is \[kg\,m/{s^2}\]. Therefore, we can express the dimensions of force as,
\[{F_1} = \left[ {{{\text{M}}_1}\,{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]\]…… (7)
We can express the dimensions of force in other system as follows,
\[{F_2} = \left[ {{{\text{M}}_2}\,{{\text{L}}_2}\,{\text{T}}_2^{ - 2}} \right]\]…… (8)
We have given that,
\[\dfrac{{{F_2}}}{{{F_1}}} = \dfrac{1}{{\varepsilon t}}\]
Using equations (7) and (8), we can write the above equation as,
\[\dfrac{{\left[ {{{\text{M}}_2}\,{{\text{L}}_2}\,{\text{T}}_2^{ - 2}} \right]}}{{\left[ {{{\text{M}}_1}\,{{\text{L}}_1}\,{\text{T}}_1^{ - 2}} \right]}} = \dfrac{1}{{\varepsilon t}}\] …… (9)
Using equation (6) in the above equation, we get,
\[\left[ {\dfrac{{{{\text{M}}_2}}}{{{{\text{M}}_1}}}} \right]\varepsilon t = \dfrac{1}{{\varepsilon t}}\]
\[ \Rightarrow {{\text{M}}_2} = \dfrac{{{{\text{M}}_1}}}{{{\varepsilon ^2}{t^2}}}\]
So, the option (A) is correct.
From equation (3), we can write,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{{\text{T}}_1}} \right]}}{{\left[ {{{\text{L}}_1}\,{{\text{T}}_2}} \right]}} = \dfrac{{{\varepsilon ^2}}}{t}\]
\[ \Rightarrow \left[ {\dfrac{{{{\text{T}}_{\text{1}}}}}{{{{\text{T}}_{\text{2}}}}}} \right] = \dfrac{{{\varepsilon ^2}}}{t}\left[ {\dfrac{{{{\text{L}}_{\text{1}}}}}{{{{\text{L}}_{\text{2}}}}}} \right]\] ….. (10)
We can write the equation (6) as,
\[\dfrac{{\left[ {{{\text{L}}_2}\,{\text{T}}_1^2} \right]}}{{\left[ {{{\text{L}}_1}\,{\text{T}}_2^2} \right]}} = \varepsilon t\]
Now, substituting equation (10) in the above equation we get,
\[\left[ {\dfrac{{{{\text{L}}_{\text{2}}}}}{{{{\text{L}}_{\text{1}}}}}} \right]\dfrac{{{\varepsilon ^4}}}{{{t^2}}}\left[ {\dfrac{{{\text{L}}_1^2}}{{{\text{L}}_2^2}}} \right] = \varepsilon t\]
\[ \Rightarrow \dfrac{{{{\text{L}}_{\text{2}}}}}{{{{\text{L}}_{\text{1}}}}} = \dfrac{{{\varepsilon ^3}}}{{{t^3}}}\]
\[ \therefore {{\text{L}}_{\text{2}}} = \dfrac{{{{\text{L}}_{\text{1}}}{\varepsilon ^3}}}{{{t^3}}}\]
Therefore, the option (C) is also correct.
So, the correct answer is option (A) and (C).
Note:To answer this type of questions, students should remember the units and dimensions of velocity, acceleration and force. Most of the other physical parameters depend upon these terms. If the unit of the physical parameter does not contain mass term, then the dimensions of this parameter is written without the mass term.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

