Answer
Verified
493.5k+ views
Hint: For solving this question, we need to know about the basic concepts of binomial theorem and the basic properties of algebraic expansion raised to the power of n. The formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{r}}{{b}^{n-r}}}$. We will use this to obtain the ${{7}^{th}}$ term from the beginning and the ${{7}^{th}}$ term from the end.
Complete step-by-step answer:
While solving the problem we should know the basics of binomial theorem and how to expand an algebraic expression raised to the power n. Now, we know that the formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{n-r}}{{b}^{r}}}$. Thus, in general, the ${{r}^{th}}$ from the beginning would be $\dfrac{n!}{(r-1)!\left( n-r+1 \right)!}{{a}^{n-r+1}}{{b}^{r-1}}$. Thus, to solve this problem, we have the ${{7}^{th}}$ term as –
=$\dfrac{n!}{6!\left( n-6 \right)!}{{a}^{n-6}}{{b}^{6}}$
(Now, we know that a =${{2}^{\dfrac{1}{3}}}$ and b = ${{3}^{-\dfrac{1}{3}}}$, since, the expression here is ${{\left( {{2}^{\dfrac{1}{3}}}+{{3}^{-\dfrac{1}{3}}} \right)}^{n}}$)
= \[\dfrac{n!}{6!\left( n-6 \right)!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}\] -- (1)
Now, the ${{7}^{th}}$ term from the end would be the ${{(n-6)}^{th}}$ term from the beginning. Thus, we have,
= $\dfrac{n!}{\left( n-6 \right)!6!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}$ -- (2)
Since, the ratio is 1:6. Thus, we have
$\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}}=\dfrac{1}{6}$
Thus,
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{(n-6)-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6-(n-6)}}=\dfrac{1}{6}$
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-12}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
${{\left( {{2}^{-\dfrac{1}{3}}} \right)}^{12-n}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
\[{{\left( {{2}^{-\dfrac{1}{3}}}\times {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{(2\times 3)}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}={{6}^{-1}}\]
Now, we can compare the co-efficient to get the required value of n. We have,
$\dfrac{-(12-n)}{3}=-1$
-(12-n) = -3
12-n = 3
n = 9
Hence, the correct answer is (d) 9.
Note: We should be aware about the basic expansion because although we can expand algebraic expression raised to the power less than 3 by hand with ease, it becomes much more difficult to expand higher order terms such as in this case for power raised to 7. Thus, in such cases we need to remember the formula for the binomial theorem which can help us to get a particular coefficient value easily.
Complete step-by-step answer:
While solving the problem we should know the basics of binomial theorem and how to expand an algebraic expression raised to the power n. Now, we know that the formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{n-r}}{{b}^{r}}}$. Thus, in general, the ${{r}^{th}}$ from the beginning would be $\dfrac{n!}{(r-1)!\left( n-r+1 \right)!}{{a}^{n-r+1}}{{b}^{r-1}}$. Thus, to solve this problem, we have the ${{7}^{th}}$ term as –
=$\dfrac{n!}{6!\left( n-6 \right)!}{{a}^{n-6}}{{b}^{6}}$
(Now, we know that a =${{2}^{\dfrac{1}{3}}}$ and b = ${{3}^{-\dfrac{1}{3}}}$, since, the expression here is ${{\left( {{2}^{\dfrac{1}{3}}}+{{3}^{-\dfrac{1}{3}}} \right)}^{n}}$)
= \[\dfrac{n!}{6!\left( n-6 \right)!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}\] -- (1)
Now, the ${{7}^{th}}$ term from the end would be the ${{(n-6)}^{th}}$ term from the beginning. Thus, we have,
= $\dfrac{n!}{\left( n-6 \right)!6!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}$ -- (2)
Since, the ratio is 1:6. Thus, we have
$\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}}=\dfrac{1}{6}$
Thus,
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{(n-6)-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6-(n-6)}}=\dfrac{1}{6}$
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-12}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
${{\left( {{2}^{-\dfrac{1}{3}}} \right)}^{12-n}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
\[{{\left( {{2}^{-\dfrac{1}{3}}}\times {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{(2\times 3)}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}={{6}^{-1}}\]
Now, we can compare the co-efficient to get the required value of n. We have,
$\dfrac{-(12-n)}{3}=-1$
-(12-n) = -3
12-n = 3
n = 9
Hence, the correct answer is (d) 9.
Note: We should be aware about the basic expansion because although we can expand algebraic expression raised to the power less than 3 by hand with ease, it becomes much more difficult to expand higher order terms such as in this case for power raised to 7. Thus, in such cases we need to remember the formula for the binomial theorem which can help us to get a particular coefficient value easily.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it