In the expansion of ${{\left( {{2}^{\dfrac{1}{3}}}+{{3}^{-\dfrac{1}{3}}} \right)}^{n}}$, the ratio of the ${{7}^{th}}$ term from the beginning to the ${{7}^{th}}$ term from the end is 1 : 6, then n is equal to –
(a) 6
(b) 7
(c) 8
(d) 9
Answer
380.4k+ views
Hint: For solving this question, we need to know about the basic concepts of binomial theorem and the basic properties of algebraic expansion raised to the power of n. The formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{r}}{{b}^{n-r}}}$. We will use this to obtain the ${{7}^{th}}$ term from the beginning and the ${{7}^{th}}$ term from the end.
Complete step-by-step answer:
While solving the problem we should know the basics of binomial theorem and how to expand an algebraic expression raised to the power n. Now, we know that the formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{n-r}}{{b}^{r}}}$. Thus, in general, the ${{r}^{th}}$ from the beginning would be $\dfrac{n!}{(r-1)!\left( n-r+1 \right)!}{{a}^{n-r+1}}{{b}^{r-1}}$. Thus, to solve this problem, we have the ${{7}^{th}}$ term as –
=$\dfrac{n!}{6!\left( n-6 \right)!}{{a}^{n-6}}{{b}^{6}}$
(Now, we know that a =${{2}^{\dfrac{1}{3}}}$ and b = ${{3}^{-\dfrac{1}{3}}}$, since, the expression here is ${{\left( {{2}^{\dfrac{1}{3}}}+{{3}^{-\dfrac{1}{3}}} \right)}^{n}}$)
= \[\dfrac{n!}{6!\left( n-6 \right)!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}\] -- (1)
Now, the ${{7}^{th}}$ term from the end would be the ${{(n-6)}^{th}}$ term from the beginning. Thus, we have,
= $\dfrac{n!}{\left( n-6 \right)!6!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}$ -- (2)
Since, the ratio is 1:6. Thus, we have
$\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}}=\dfrac{1}{6}$
Thus,
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{(n-6)-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6-(n-6)}}=\dfrac{1}{6}$
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-12}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
${{\left( {{2}^{-\dfrac{1}{3}}} \right)}^{12-n}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
\[{{\left( {{2}^{-\dfrac{1}{3}}}\times {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{(2\times 3)}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}={{6}^{-1}}\]
Now, we can compare the co-efficient to get the required value of n. We have,
$\dfrac{-(12-n)}{3}=-1$
-(12-n) = -3
12-n = 3
n = 9
Hence, the correct answer is (d) 9.
Note: We should be aware about the basic expansion because although we can expand algebraic expression raised to the power less than 3 by hand with ease, it becomes much more difficult to expand higher order terms such as in this case for power raised to 7. Thus, in such cases we need to remember the formula for the binomial theorem which can help us to get a particular coefficient value easily.
Complete step-by-step answer:
While solving the problem we should know the basics of binomial theorem and how to expand an algebraic expression raised to the power n. Now, we know that the formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{n-r}}{{b}^{r}}}$. Thus, in general, the ${{r}^{th}}$ from the beginning would be $\dfrac{n!}{(r-1)!\left( n-r+1 \right)!}{{a}^{n-r+1}}{{b}^{r-1}}$. Thus, to solve this problem, we have the ${{7}^{th}}$ term as –
=$\dfrac{n!}{6!\left( n-6 \right)!}{{a}^{n-6}}{{b}^{6}}$
(Now, we know that a =${{2}^{\dfrac{1}{3}}}$ and b = ${{3}^{-\dfrac{1}{3}}}$, since, the expression here is ${{\left( {{2}^{\dfrac{1}{3}}}+{{3}^{-\dfrac{1}{3}}} \right)}^{n}}$)
= \[\dfrac{n!}{6!\left( n-6 \right)!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}\] -- (1)
Now, the ${{7}^{th}}$ term from the end would be the ${{(n-6)}^{th}}$ term from the beginning. Thus, we have,
= $\dfrac{n!}{\left( n-6 \right)!6!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}$ -- (2)
Since, the ratio is 1:6. Thus, we have
$\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}}=\dfrac{1}{6}$
Thus,
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{(n-6)-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6-(n-6)}}=\dfrac{1}{6}$
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-12}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
${{\left( {{2}^{-\dfrac{1}{3}}} \right)}^{12-n}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
\[{{\left( {{2}^{-\dfrac{1}{3}}}\times {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{(2\times 3)}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}={{6}^{-1}}\]
Now, we can compare the co-efficient to get the required value of n. We have,
$\dfrac{-(12-n)}{3}=-1$
-(12-n) = -3
12-n = 3
n = 9
Hence, the correct answer is (d) 9.
Note: We should be aware about the basic expansion because although we can expand algebraic expression raised to the power less than 3 by hand with ease, it becomes much more difficult to expand higher order terms such as in this case for power raised to 7. Thus, in such cases we need to remember the formula for the binomial theorem which can help us to get a particular coefficient value easily.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
