
In the Cartesian plane, $O$ is the origin of the coordinate axes. A person starts at $O$ and walks a distance of $3{\text{ units}}$ in the NORTH-EAST direction and reaches the point $P$ . From $P$ , he walks ${\text{4 units}}$ of distance parallel to NORTH-WEST direction and reaches the point $Q$. Express the vector $\mathop {OQ}\limits^ \to $ in terms of $\vec i$ and $\vec j$ $\left( {Observe{\text{ }}\angle {\text{XOP = 4}}{{\text{5}}^ \circ }} \right)$.
Answer
555.9k+ views
Hint: In this question, first of all, we will find the projection of the point $P$ on $x - axis$ , and $y - axis$ then with this, we will get the point $P$ position. Similarly, we will find the coordinate for $Q$ , and then finally we will get $\mathop {OQ}\limits^ \to $ by position vector of $Q$ minus the position vector of $O$.
Complete step-by-step answer:
Since a person walks the distance of $3{\text{ units}}$ in the NORTH-EAST
Therefore, the projection of the point $P$on $x - axis$and $y - axis$ will be
$ \Rightarrow OP\cos {45^ \circ }$
Now on substituting the values, we get
$ \Rightarrow 3 \times \dfrac{1}{{\sqrt 2 }}$
And on solving, we get
$ \Rightarrow \dfrac{3}{{\sqrt 2 }}$
Similarly,
$ \Rightarrow OP\sin {45^ \circ }$
$ \Rightarrow 3 \times \dfrac{1}{{\sqrt 2 }}$
And on solving, we get
$ \Rightarrow \dfrac{3}{{\sqrt 2 }}$
Therefore, the point \[P = \left( {\dfrac{3}{{\sqrt 2 }},\dfrac{3}{{\sqrt 2 }}} \right)\]
Now since \[\angle {\text{POA = 4}}{{\text{5}}^ \circ }\]
And we know \[\angle {\text{POA = }}\angle BPO\] , because on the opposite sides alternate angles are equal.
Therefore, \[\angle BPO{\text{ = 4}}{{\text{5}}^ \circ }\]
Now if \[\angle BPO{\text{ = 4}}{{\text{5}}^ \circ }\]
Then,\[\angle QPB{\text{ = 9}}{{\text{0}}^ \circ }{\text{ - 4}}{{\text{5}}^ \circ } = {45^ \circ }\] since the sum of the right angles be${90^ \circ }$.
Now again at the point $P$
$BP = 4\cos {45^ \circ }$
And on substituting the values, we get
$ \Rightarrow 4 \times \dfrac{1}{{\sqrt 2 }}$
On solving the above equation, we get
$ \Rightarrow \dfrac{4}{{\sqrt 2 }}$
Similarly, for $QB$
$BP = 4\sin {45^ \circ }$
And on substituting the values, we get
$ \Rightarrow 4 \times \dfrac{1}{{\sqrt 2 }}$
On solving the above equation, we get
$ \Rightarrow \dfrac{4}{{\sqrt 2 }}$
So, form the above the coordinate of $Q$ will be given as
$ \Rightarrow Q = \left[ { - \left( {\dfrac{4}{{\sqrt 2 }} - \dfrac{3}{{\sqrt 2 }}} \right),\left( {\dfrac{4}{{\sqrt 2 }} + \dfrac{3}{{\sqrt 2 }}} \right)} \right]$
And on solving, we get
$ \Rightarrow Q = \left( { - \dfrac{1}{{\sqrt 2 }},\dfrac{7}{{\sqrt 2 }}} \right)$
Therefore, $\mathop {OQ}\limits^ \to $ by position vector of $Q$ minus the position vector of $O$
So on substituting the values, we get
$ \Rightarrow \mathop {OQ}\limits^ \to = - \dfrac{1}{{\sqrt 2 }}\mathop i\limits^ \wedge + \dfrac{7}{{\sqrt 2 }}\mathop j\limits^ \wedge - 0\mathop i\limits^ \wedge - 0\mathop j\limits^ \wedge $
And on solving the above equation, we get
$\mathop { \Rightarrow OQ}\limits^ \to = - \dfrac{1}{{\sqrt 2 }}\mathop i\limits^ \wedge + \dfrac{7}{{\sqrt 2 }}\mathop j\limits^ \wedge $
Therefore the vector in terms $\mathop i\limits^ \wedge {\text{ and }}\mathop j\limits^ \wedge $ will be $ - \dfrac{1}{{\sqrt 2 }}\mathop i\limits^ \wedge + \dfrac{7}{{\sqrt 2 }}\mathop j\limits^ \wedge $
Note: The important point to note in this question is we should always draw the figure before solving it as it will reduce the complexity and help to understand it better. And also while solving we have to be aware of the signs and calculations. By using the simple geometry theorems we can easily solve this problem.
Complete step-by-step answer:
Since a person walks the distance of $3{\text{ units}}$ in the NORTH-EAST
Therefore, the projection of the point $P$on $x - axis$and $y - axis$ will be
$ \Rightarrow OP\cos {45^ \circ }$
Now on substituting the values, we get
$ \Rightarrow 3 \times \dfrac{1}{{\sqrt 2 }}$
And on solving, we get
$ \Rightarrow \dfrac{3}{{\sqrt 2 }}$
Similarly,
$ \Rightarrow OP\sin {45^ \circ }$
$ \Rightarrow 3 \times \dfrac{1}{{\sqrt 2 }}$
And on solving, we get
$ \Rightarrow \dfrac{3}{{\sqrt 2 }}$
Therefore, the point \[P = \left( {\dfrac{3}{{\sqrt 2 }},\dfrac{3}{{\sqrt 2 }}} \right)\]
Now since \[\angle {\text{POA = 4}}{{\text{5}}^ \circ }\]
And we know \[\angle {\text{POA = }}\angle BPO\] , because on the opposite sides alternate angles are equal.
Therefore, \[\angle BPO{\text{ = 4}}{{\text{5}}^ \circ }\]
Now if \[\angle BPO{\text{ = 4}}{{\text{5}}^ \circ }\]
Then,\[\angle QPB{\text{ = 9}}{{\text{0}}^ \circ }{\text{ - 4}}{{\text{5}}^ \circ } = {45^ \circ }\] since the sum of the right angles be${90^ \circ }$.
Now again at the point $P$
$BP = 4\cos {45^ \circ }$
And on substituting the values, we get
$ \Rightarrow 4 \times \dfrac{1}{{\sqrt 2 }}$
On solving the above equation, we get
$ \Rightarrow \dfrac{4}{{\sqrt 2 }}$
Similarly, for $QB$
$BP = 4\sin {45^ \circ }$
And on substituting the values, we get
$ \Rightarrow 4 \times \dfrac{1}{{\sqrt 2 }}$
On solving the above equation, we get
$ \Rightarrow \dfrac{4}{{\sqrt 2 }}$
So, form the above the coordinate of $Q$ will be given as
$ \Rightarrow Q = \left[ { - \left( {\dfrac{4}{{\sqrt 2 }} - \dfrac{3}{{\sqrt 2 }}} \right),\left( {\dfrac{4}{{\sqrt 2 }} + \dfrac{3}{{\sqrt 2 }}} \right)} \right]$
And on solving, we get
$ \Rightarrow Q = \left( { - \dfrac{1}{{\sqrt 2 }},\dfrac{7}{{\sqrt 2 }}} \right)$
Therefore, $\mathop {OQ}\limits^ \to $ by position vector of $Q$ minus the position vector of $O$
So on substituting the values, we get
$ \Rightarrow \mathop {OQ}\limits^ \to = - \dfrac{1}{{\sqrt 2 }}\mathop i\limits^ \wedge + \dfrac{7}{{\sqrt 2 }}\mathop j\limits^ \wedge - 0\mathop i\limits^ \wedge - 0\mathop j\limits^ \wedge $
And on solving the above equation, we get
$\mathop { \Rightarrow OQ}\limits^ \to = - \dfrac{1}{{\sqrt 2 }}\mathop i\limits^ \wedge + \dfrac{7}{{\sqrt 2 }}\mathop j\limits^ \wedge $
Therefore the vector in terms $\mathop i\limits^ \wedge {\text{ and }}\mathop j\limits^ \wedge $ will be $ - \dfrac{1}{{\sqrt 2 }}\mathop i\limits^ \wedge + \dfrac{7}{{\sqrt 2 }}\mathop j\limits^ \wedge $
Note: The important point to note in this question is we should always draw the figure before solving it as it will reduce the complexity and help to understand it better. And also while solving we have to be aware of the signs and calculations. By using the simple geometry theorems we can easily solve this problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

