
In Rutherford’s experiment the number of $ \alpha $ particles scattered through an angle $ {60^ \circ } $ is $ 112 $ per minute. Find the number of $ \alpha $ particles scattered through an angle of $ {90^ \circ } $ per minute by the same nucleus?
(A) $ 28 $ per minute.
(B) $ 112 $ per minute
(C) $ 12.5 $ per minute
(D) $ 7 $ per minute
Answer
554.7k+ views
Hint : The given question can be solved by the concepts of Rutherford’s atomic experiments from where he published the scattering formula establishing an inversely proportional relationship between the number of particles scattered and scattering angle.
Formula Used: In this question, the following formulae will be used,
$ \Rightarrow N(\theta ) = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{\theta }{2}} \right)}} $ where $ N(\theta ) $ is the number of $ \alpha $ particles scattered through an angle $ \theta $ and $ K $ is a constant.
Complete step by step answer
Ernest Rutherford in his $ \alpha - {\text{particle}} $ scattering experiment shot a beam of $ \alpha - {\text{particles}} $ at an extremely thin gold foil. It was observed that a major fraction of the $ \alpha - {\text{particles}} $ passed through the sheet without any deflection while some were deflected by both small and large angles (about $ {180^ \circ } $ ).
According to Rutherford’s scattering formula, $ N(\theta ) \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}} $ where $ N(\theta ) $ is the number of $ \alpha $ particles scattered through an angle $ \theta $ where $ \theta $ is the scattering angle.
It can be written as, $ N(\theta ) = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{\theta }{2}} \right)}} $ where $ K $ is a constant.
We know that 112 particles can be scattered through an angle of $ {60^ \circ } $ in one minute.
Assigning the values, $ N(\theta ) = 112 $ and $ \theta = {60^ \circ } $ we get the equation,
$ \Rightarrow 112 = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{{{{60}^ \circ }}}{2}} \right)}} $
$ \Rightarrow \;112 = \dfrac{K}{{{{\sin }^4}({{30}^ \circ })}} $
Simplifying this equation,
$ \Rightarrow K = 112 \times {\sin ^4}({30^{^ \circ }}) $
We know that, $ \sin {30^ \circ } = \dfrac{1}{2} $ . Therefore, $ {\sin ^4}({30^ \circ }) = {\left( {\dfrac{1}{2}} \right)^4} $
$ \Rightarrow {\sin ^4}{30^ \circ } = \dfrac{1}{{16}} $ .
From here, we get the value of $ K $ .
$ \Rightarrow K = 112 \times \dfrac{1}{{16}} $
$ \Rightarrow K = 7 $ .
Let $ N'({90^ \circ }) $ be the number of particles scattered through a scattering angle of $ {90^ \circ } $ . Hence, $ \theta = {90^ \circ } $ $ \theta = {90^ \circ } $ .
According to the formula, $ N'({90^ \circ }) = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{{{{90}^ \circ }}}{2}} \right)}} $
$ \Rightarrow N'({90^ \circ }) = \dfrac{K}{{{{\sin }^4}({{45}^ \circ })}} $
Here we substitute the value of $ K $ that has been calculated.
$ \Rightarrow N'({90^ \circ }) = \dfrac{7}{{{{\sin }^4}({{45}^ \circ })}} $
The value of $ \sin {45^ \circ } $ is, $ \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ .
Thus, $ {\sin ^4}{45^ \circ } = {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^4} = \dfrac{1}{4} $
We have to find the value of $ N'({90^ \circ }) $ .
Therefore, substituting the values, $ K = 7{\text{ and si}}{{\text{n}}^4}({45^ \circ }) = \dfrac{1}{4} $ ,
We get the equation, $ N'({90^ \circ }) = \dfrac{7}{{\dfrac{1}{4}}} $
$ \Rightarrow N'({90^ \circ }) = 7 \times 4 $
$ \therefore $ $ N'({90^ \circ }) = 28. $
The number of $ \alpha - particles $ scattered through an angle of $ {90^ \circ } $ per minute by the same nucleus is 28 per minute.
Hence, the correct option is option A.
Note
Another way to solve the problem has been given here. If $ N(\theta ) \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}} $ , then according to the information given in the question,
$ 112 \propto \dfrac{1}{{{{\sin }^4}\left( {\dfrac{{{{60}^ \circ }}}{2}} \right)}} $ where 112 is the number of $ \alpha $ particles scattered through an angle of $ {60^ \circ } $ per minute.
So, $ N'({90^ \circ }) \propto \dfrac{1}{{{{\sin }^4}\left( {\dfrac{{{{90}^ \circ }}}{2}} \right)}} $ where $ N'({90^ \circ }) $ is the number of $ \alpha $ particles scattered through an angle of $ {90^ \circ } $ per minute.
From the above equations, it can be written that,
$\Rightarrow \dfrac{{N'({{90}^ \circ })}}{{112}}\alpha \dfrac{{{{\sin }^4}\left( {\dfrac{{60}}{2}} \right)}}{{{{\sin }^4}\left( {\dfrac{{{{90}^ \circ }}}{2}} \right)}} $
$ \therefore N'({90^ \circ }) = 28. $
The number of $ \alpha - particles $ scattered through an angle of $ {90^ \circ } $ per minute by the same nucleus is 28 per minute.
Formula Used: In this question, the following formulae will be used,
$ \Rightarrow N(\theta ) = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{\theta }{2}} \right)}} $ where $ N(\theta ) $ is the number of $ \alpha $ particles scattered through an angle $ \theta $ and $ K $ is a constant.
Complete step by step answer
Ernest Rutherford in his $ \alpha - {\text{particle}} $ scattering experiment shot a beam of $ \alpha - {\text{particles}} $ at an extremely thin gold foil. It was observed that a major fraction of the $ \alpha - {\text{particles}} $ passed through the sheet without any deflection while some were deflected by both small and large angles (about $ {180^ \circ } $ ).
According to Rutherford’s scattering formula, $ N(\theta ) \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}} $ where $ N(\theta ) $ is the number of $ \alpha $ particles scattered through an angle $ \theta $ where $ \theta $ is the scattering angle.
It can be written as, $ N(\theta ) = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{\theta }{2}} \right)}} $ where $ K $ is a constant.
We know that 112 particles can be scattered through an angle of $ {60^ \circ } $ in one minute.
Assigning the values, $ N(\theta ) = 112 $ and $ \theta = {60^ \circ } $ we get the equation,
$ \Rightarrow 112 = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{{{{60}^ \circ }}}{2}} \right)}} $
$ \Rightarrow \;112 = \dfrac{K}{{{{\sin }^4}({{30}^ \circ })}} $
Simplifying this equation,
$ \Rightarrow K = 112 \times {\sin ^4}({30^{^ \circ }}) $
We know that, $ \sin {30^ \circ } = \dfrac{1}{2} $ . Therefore, $ {\sin ^4}({30^ \circ }) = {\left( {\dfrac{1}{2}} \right)^4} $
$ \Rightarrow {\sin ^4}{30^ \circ } = \dfrac{1}{{16}} $ .
From here, we get the value of $ K $ .
$ \Rightarrow K = 112 \times \dfrac{1}{{16}} $
$ \Rightarrow K = 7 $ .
Let $ N'({90^ \circ }) $ be the number of particles scattered through a scattering angle of $ {90^ \circ } $ . Hence, $ \theta = {90^ \circ } $ $ \theta = {90^ \circ } $ .
According to the formula, $ N'({90^ \circ }) = \dfrac{K}{{{{\sin }^4}\left( {\dfrac{{{{90}^ \circ }}}{2}} \right)}} $
$ \Rightarrow N'({90^ \circ }) = \dfrac{K}{{{{\sin }^4}({{45}^ \circ })}} $
Here we substitute the value of $ K $ that has been calculated.
$ \Rightarrow N'({90^ \circ }) = \dfrac{7}{{{{\sin }^4}({{45}^ \circ })}} $
The value of $ \sin {45^ \circ } $ is, $ \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ .
Thus, $ {\sin ^4}{45^ \circ } = {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^4} = \dfrac{1}{4} $
We have to find the value of $ N'({90^ \circ }) $ .
Therefore, substituting the values, $ K = 7{\text{ and si}}{{\text{n}}^4}({45^ \circ }) = \dfrac{1}{4} $ ,
We get the equation, $ N'({90^ \circ }) = \dfrac{7}{{\dfrac{1}{4}}} $
$ \Rightarrow N'({90^ \circ }) = 7 \times 4 $
$ \therefore $ $ N'({90^ \circ }) = 28. $
The number of $ \alpha - particles $ scattered through an angle of $ {90^ \circ } $ per minute by the same nucleus is 28 per minute.
Hence, the correct option is option A.
Note
Another way to solve the problem has been given here. If $ N(\theta ) \propto \dfrac{1}{{{{\sin }^4}\dfrac{\theta }{2}}} $ , then according to the information given in the question,
$ 112 \propto \dfrac{1}{{{{\sin }^4}\left( {\dfrac{{{{60}^ \circ }}}{2}} \right)}} $ where 112 is the number of $ \alpha $ particles scattered through an angle of $ {60^ \circ } $ per minute.
So, $ N'({90^ \circ }) \propto \dfrac{1}{{{{\sin }^4}\left( {\dfrac{{{{90}^ \circ }}}{2}} \right)}} $ where $ N'({90^ \circ }) $ is the number of $ \alpha $ particles scattered through an angle of $ {90^ \circ } $ per minute.
From the above equations, it can be written that,
$\Rightarrow \dfrac{{N'({{90}^ \circ })}}{{112}}\alpha \dfrac{{{{\sin }^4}\left( {\dfrac{{60}}{2}} \right)}}{{{{\sin }^4}\left( {\dfrac{{{{90}^ \circ }}}{2}} \right)}} $
$ \therefore N'({90^ \circ }) = 28. $
The number of $ \alpha - particles $ scattered through an angle of $ {90^ \circ } $ per minute by the same nucleus is 28 per minute.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

