
In a skew-symmetric matrix, the diagonal elements are all
A) One
B) Zero
C) Different from each other
D) Non-zero
Answer
571.2k+ views
Hint: A square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]is said to be skew symmetric matrix if
$A' = - A$ or $A = - A'$, that is \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]for all possible values of $i$ and $j$.
In transpose of a matrix, columns and rows are interchanged. Transpose denoted by: $A'{\text{ (or }}\mathop A\nolimits^T )$. For example:
If \[A = {\left[ {\begin{array}{*{20}{c}}
3 \\
{\sqrt 3 } \\
0
\end{array}{\text{ }}\begin{array}{*{20}{c}}
5 \\
1 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{3 \times 2}}\]
Then \[A' = {\left[ {\begin{array}{*{20}{c}}
3 \\
5
\end{array}\begin{array}{*{20}{c}}
{\sqrt 3 } \\
1
\end{array}\begin{array}{*{20}{c}}
0 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{2 \times 3}}\]
Complete step-by-step answer:
Step 1: Consider a square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
Where $i$: row number and $j$: column number.
Step 2: Condition for skew symmetric matrix:
$A' = - A$
Here,$A'$is transpose of matrix A
i.e. \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]
Step 3: Now, if we put $i = j$,
We have, \[\mathop a\nolimits_{ii} = - \mathop a\nolimits_{ii} \]
\[
\therefore 2\mathop a\nolimits_{ii} = 0 \\
\Rightarrow \mathop a\nolimits_{ii} = 0 \\
\] for all $i's$.
Step 4: diagonal elements of a square matrix
In the square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
$A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Elements ${a_{11}},{a_{22}},{a_{33}}$ are diagonal elements.
${a_{ii}} = 0$
$ \Rightarrow {a_{11}} = {a_{22}} = {a_{33}} = 0$
All the diagonal elements of the skew symmetric matrix are zero. Thus, the correct option is (B).
Note: Another way to understand the solution.
We have a theorem: Any square matrix A with real number entries, $A - A'$is a skew symmetric matrix.
Example question: The skew symmetric matrix of matrix $B = \left[ {\begin{array}{*{20}{c}}
2&{ - 2}&{ - 4} \\
{ - 1}&3&4 \\
1&{ - 2}&{ - 3}
\end{array}} \right]$.
$A' = - A$ or $A = - A'$, that is \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]for all possible values of $i$ and $j$.
In transpose of a matrix, columns and rows are interchanged. Transpose denoted by: $A'{\text{ (or }}\mathop A\nolimits^T )$. For example:
If \[A = {\left[ {\begin{array}{*{20}{c}}
3 \\
{\sqrt 3 } \\
0
\end{array}{\text{ }}\begin{array}{*{20}{c}}
5 \\
1 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{3 \times 2}}\]
Then \[A' = {\left[ {\begin{array}{*{20}{c}}
3 \\
5
\end{array}\begin{array}{*{20}{c}}
{\sqrt 3 } \\
1
\end{array}\begin{array}{*{20}{c}}
0 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{2 \times 3}}\]
Complete step-by-step answer:
Step 1: Consider a square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
Where $i$: row number and $j$: column number.
Step 2: Condition for skew symmetric matrix:
$A' = - A$
Here,$A'$is transpose of matrix A
i.e. \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]
Step 3: Now, if we put $i = j$,
We have, \[\mathop a\nolimits_{ii} = - \mathop a\nolimits_{ii} \]
\[
\therefore 2\mathop a\nolimits_{ii} = 0 \\
\Rightarrow \mathop a\nolimits_{ii} = 0 \\
\] for all $i's$.
Step 4: diagonal elements of a square matrix
In the square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
$A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Elements ${a_{11}},{a_{22}},{a_{33}}$ are diagonal elements.
${a_{ii}} = 0$
$ \Rightarrow {a_{11}} = {a_{22}} = {a_{33}} = 0$
All the diagonal elements of the skew symmetric matrix are zero. Thus, the correct option is (B).
Note: Another way to understand the solution.
We have a theorem: Any square matrix A with real number entries, $A - A'$is a skew symmetric matrix.
Example question: The skew symmetric matrix of matrix $B = \left[ {\begin{array}{*{20}{c}}
2&{ - 2}&{ - 4} \\
{ - 1}&3&4 \\
1&{ - 2}&{ - 3}
\end{array}} \right]$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

