
In a skew-symmetric matrix, the diagonal elements are all
A) One
B) Zero
C) Different from each other
D) Non-zero
Answer
572.1k+ views
Hint: A square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]is said to be skew symmetric matrix if
$A' = - A$ or $A = - A'$, that is \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]for all possible values of $i$ and $j$.
In transpose of a matrix, columns and rows are interchanged. Transpose denoted by: $A'{\text{ (or }}\mathop A\nolimits^T )$. For example:
If \[A = {\left[ {\begin{array}{*{20}{c}}
3 \\
{\sqrt 3 } \\
0
\end{array}{\text{ }}\begin{array}{*{20}{c}}
5 \\
1 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{3 \times 2}}\]
Then \[A' = {\left[ {\begin{array}{*{20}{c}}
3 \\
5
\end{array}\begin{array}{*{20}{c}}
{\sqrt 3 } \\
1
\end{array}\begin{array}{*{20}{c}}
0 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{2 \times 3}}\]
Complete step-by-step answer:
Step 1: Consider a square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
Where $i$: row number and $j$: column number.
Step 2: Condition for skew symmetric matrix:
$A' = - A$
Here,$A'$is transpose of matrix A
i.e. \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]
Step 3: Now, if we put $i = j$,
We have, \[\mathop a\nolimits_{ii} = - \mathop a\nolimits_{ii} \]
\[
\therefore 2\mathop a\nolimits_{ii} = 0 \\
\Rightarrow \mathop a\nolimits_{ii} = 0 \\
\] for all $i's$.
Step 4: diagonal elements of a square matrix
In the square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
$A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Elements ${a_{11}},{a_{22}},{a_{33}}$ are diagonal elements.
${a_{ii}} = 0$
$ \Rightarrow {a_{11}} = {a_{22}} = {a_{33}} = 0$
All the diagonal elements of the skew symmetric matrix are zero. Thus, the correct option is (B).
Note: Another way to understand the solution.
We have a theorem: Any square matrix A with real number entries, $A - A'$is a skew symmetric matrix.
Example question: The skew symmetric matrix of matrix $B = \left[ {\begin{array}{*{20}{c}}
2&{ - 2}&{ - 4} \\
{ - 1}&3&4 \\
1&{ - 2}&{ - 3}
\end{array}} \right]$.
$A' = - A$ or $A = - A'$, that is \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]for all possible values of $i$ and $j$.
In transpose of a matrix, columns and rows are interchanged. Transpose denoted by: $A'{\text{ (or }}\mathop A\nolimits^T )$. For example:
If \[A = {\left[ {\begin{array}{*{20}{c}}
3 \\
{\sqrt 3 } \\
0
\end{array}{\text{ }}\begin{array}{*{20}{c}}
5 \\
1 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{3 \times 2}}\]
Then \[A' = {\left[ {\begin{array}{*{20}{c}}
3 \\
5
\end{array}\begin{array}{*{20}{c}}
{\sqrt 3 } \\
1
\end{array}\begin{array}{*{20}{c}}
0 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{2 \times 3}}\]
Complete step-by-step answer:
Step 1: Consider a square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
Where $i$: row number and $j$: column number.
Step 2: Condition for skew symmetric matrix:
$A' = - A$
Here,$A'$is transpose of matrix A
i.e. \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]
Step 3: Now, if we put $i = j$,
We have, \[\mathop a\nolimits_{ii} = - \mathop a\nolimits_{ii} \]
\[
\therefore 2\mathop a\nolimits_{ii} = 0 \\
\Rightarrow \mathop a\nolimits_{ii} = 0 \\
\] for all $i's$.
Step 4: diagonal elements of a square matrix
In the square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
$A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Elements ${a_{11}},{a_{22}},{a_{33}}$ are diagonal elements.
${a_{ii}} = 0$
$ \Rightarrow {a_{11}} = {a_{22}} = {a_{33}} = 0$
All the diagonal elements of the skew symmetric matrix are zero. Thus, the correct option is (B).
Note: Another way to understand the solution.
We have a theorem: Any square matrix A with real number entries, $A - A'$is a skew symmetric matrix.
Example question: The skew symmetric matrix of matrix $B = \left[ {\begin{array}{*{20}{c}}
2&{ - 2}&{ - 4} \\
{ - 1}&3&4 \\
1&{ - 2}&{ - 3}
\end{array}} \right]$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

