Answer
Verified
402k+ views
Hint: Cyclotron is a machine which is used to accelerate the positive charges by using both the electrical and magnetic field rapidly on particle that is travelling outside in spiral path now in order to solution of above question we need to gain formula the velocity by equalizing centripetal force and Lorentz force.
Formula used:
${{F}_{c}}=\dfrac{m{{v}^{2}}}{r}$
And
${{F}_{B}}=qvB$
Complete answer:
In order to keep particles in a curved path, centripetal force and Lorentz’s force on the magnetic field need to be equal.
Centripetal force = Lorentz’s force
$\begin{align}
& \Rightarrow {{F}_{c}}={{F}_{B}} \\
& \therefore \dfrac{m{{v}^{2}}}{r}=qvB \\
\end{align}$
Where,
${{F}_{c}}$ = Centripetal force
m = mass
v = velocity
r = radius
${{F}_{B}}=$ Lorentz’s force
q = charge
v = velocity
B = magnetic field
$\begin{align}
& \Rightarrow v=\dfrac{qBr}{m}......\left( 1 \right) \\
& \therefore v\propto r......\left( 2 \right) \\
\end{align}$
Now formula for angular velocity
$\omega =\dfrac{v}{r}$
Now from the equation (1)
$\begin{align}
& \Rightarrow \dfrac{v}{r}=\dfrac{qB}{m} \\
& \therefore \omega =\dfrac{qB}{m}.....\left( 3 \right) \\
\end{align}$
So from the equation (2) we can state that velocity will increase as the radius of the circular path of the charged particle increases.
And from equation (3) we can use the statement that angular velocity will be constant when the radius at the circular path at the charged particle increases.
Hence the correct option is (C).
Additional information:
$\to $ Cyclotron is the machine which is used in many useful applications. Below is a common application in which cyclotron is used.
$\to $ Its main application is to accelerate any charged particle mainly positive charges it is used in physics and also in medicine
$\to $ It produces radioactive isotopes and these radioactive isotopes are used in nuclear medicines and some other useful applications.
$\to $ Cyclotron has a very useful application and that is used to cure the cancer patients.
$\to $ When a particle has more or less velocity then we can use a cyclotron to gain the required amount of velocity.
Note:
If we want a direct relation between angular velocity and the required formula, then we can directly remember the formula $v=\dfrac{qBr}{m}$ for velocity so that we can solve this question very fast.
Formula used:
${{F}_{c}}=\dfrac{m{{v}^{2}}}{r}$
And
${{F}_{B}}=qvB$
Complete answer:
In order to keep particles in a curved path, centripetal force and Lorentz’s force on the magnetic field need to be equal.
Centripetal force = Lorentz’s force
$\begin{align}
& \Rightarrow {{F}_{c}}={{F}_{B}} \\
& \therefore \dfrac{m{{v}^{2}}}{r}=qvB \\
\end{align}$
Where,
${{F}_{c}}$ = Centripetal force
m = mass
v = velocity
r = radius
${{F}_{B}}=$ Lorentz’s force
q = charge
v = velocity
B = magnetic field
$\begin{align}
& \Rightarrow v=\dfrac{qBr}{m}......\left( 1 \right) \\
& \therefore v\propto r......\left( 2 \right) \\
\end{align}$
Now formula for angular velocity
$\omega =\dfrac{v}{r}$
Now from the equation (1)
$\begin{align}
& \Rightarrow \dfrac{v}{r}=\dfrac{qB}{m} \\
& \therefore \omega =\dfrac{qB}{m}.....\left( 3 \right) \\
\end{align}$
So from the equation (2) we can state that velocity will increase as the radius of the circular path of the charged particle increases.
And from equation (3) we can use the statement that angular velocity will be constant when the radius at the circular path at the charged particle increases.
Hence the correct option is (C).
Additional information:
$\to $ Cyclotron is the machine which is used in many useful applications. Below is a common application in which cyclotron is used.
$\to $ Its main application is to accelerate any charged particle mainly positive charges it is used in physics and also in medicine
$\to $ It produces radioactive isotopes and these radioactive isotopes are used in nuclear medicines and some other useful applications.
$\to $ Cyclotron has a very useful application and that is used to cure the cancer patients.
$\to $ When a particle has more or less velocity then we can use a cyclotron to gain the required amount of velocity.
Note:
If we want a direct relation between angular velocity and the required formula, then we can directly remember the formula $v=\dfrac{qBr}{m}$ for velocity so that we can solve this question very fast.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE