
In a cricket match against Pakistan, Azhar wants to bat before Jadeja and Jadeja wants to bat before Ganguli. The number of possible batting orders with the above restrictions, if the remaining eight team members are prepared to bat at any given place, is
A) $\dfrac{{11!}}{{3!}}$
B) ${}^{11}{P_3}$
C) $\dfrac{{11!}}{3}$
D) None
Answer
584.4k+ views
Hint:: We should have the concept of permutation to solve this problem. In the question, we have to find out the number of ways the players will play in order along with given restrictions. Apply the concept of permutation according to given restrictions find out the total no. of ways to arrange all players fixing the positions of $3$ players. For solving this, the factorial of total no. of players ($11$ in a cricket team) should be multiplied by the factorial of no. of players having no restriction & this should be divided by-product of the factorial of no. of players having restriction (3 here) & factorial of no. of players having no restriction (8 here).
Complete step by step solution:
The total number of players in a cricket match is $ = 11$players.
Now, given restrictions are – Azhar, Jadeja, and Ganguli.
Since it is given that Azhar will play before Jadeja and Jadeja will play before Ganguli.
According to question Azhar, Jadeja and Ganguli can play in any order\[like{\text{ }}1,2,3{\text{ }}or{\text{ }}2,3,4{\text{ }}or{\text{ }}3,4,5{\text{ }}etc\] i.e. Azhar can take any position from \[1{\text{ }}to{\text{ }}9\] but should be one after another (Azhar then Jadeja then Ganguli ) as mentioned in question.
So, their order or places are fixed.
Remaining players in team $ = (11 - 3) = 8$players.
$\Rightarrow$ So, they will arrange in $ = 8!$ways and fixed order are $ = 3$.
$\Rightarrow$ $\dfrac{{Total{\text{ }}no.{\text{ }}of{\text{ }}players!}}{{no.of{\text{ }}players{\text{ with }}restriction!{\text{ }} \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ with }}no{\text{ }}restrictions!}}$\[ \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ }}having{\text{ }}no{\text{ }}restrictions\]
$ = \dfrac{{11!}}{{3! \times 8!}} \times 8!$
On simplifying the above terms we get,
$ = \dfrac{{11!}}{{3!}}$
$\therefore$ No. of possible batting order $ = \dfrac{{11!}}{{3!}}$. Hence option (A) is the correct answer.
Note: First of all, read the question properly to understand given restrictions in the question so that you can relate the way needed to solve the sum in your mind. The above question was asked from permutation. It is a conceptual topic and required great concentration specially on the restrictions given in the question. Sometimes there is a chance of using the wrong formula for solving because the formula for this type of problem depends completely on what restriction is given regarding arrangements so a crystal-clear concept is required to solve these questions.
Complete step by step solution:
The total number of players in a cricket match is $ = 11$players.
Now, given restrictions are – Azhar, Jadeja, and Ganguli.
Since it is given that Azhar will play before Jadeja and Jadeja will play before Ganguli.
According to question Azhar, Jadeja and Ganguli can play in any order\[like{\text{ }}1,2,3{\text{ }}or{\text{ }}2,3,4{\text{ }}or{\text{ }}3,4,5{\text{ }}etc\] i.e. Azhar can take any position from \[1{\text{ }}to{\text{ }}9\] but should be one after another (Azhar then Jadeja then Ganguli ) as mentioned in question.
So, their order or places are fixed.
Remaining players in team $ = (11 - 3) = 8$players.
$\Rightarrow$ So, they will arrange in $ = 8!$ways and fixed order are $ = 3$.
$\Rightarrow$ $\dfrac{{Total{\text{ }}no.{\text{ }}of{\text{ }}players!}}{{no.of{\text{ }}players{\text{ with }}restriction!{\text{ }} \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ with }}no{\text{ }}restrictions!}}$\[ \times {\text{ }}no.{\text{ }}of{\text{ }}players{\text{ }}having{\text{ }}no{\text{ }}restrictions\]
$ = \dfrac{{11!}}{{3! \times 8!}} \times 8!$
On simplifying the above terms we get,
$ = \dfrac{{11!}}{{3!}}$
$\therefore$ No. of possible batting order $ = \dfrac{{11!}}{{3!}}$. Hence option (A) is the correct answer.
Note: First of all, read the question properly to understand given restrictions in the question so that you can relate the way needed to solve the sum in your mind. The above question was asked from permutation. It is a conceptual topic and required great concentration specially on the restrictions given in the question. Sometimes there is a chance of using the wrong formula for solving because the formula for this type of problem depends completely on what restriction is given regarding arrangements so a crystal-clear concept is required to solve these questions.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

