
If\[y = \sin (x + y)\], find \[\dfrac{{{d^2}y}}{{d{x^2}}}\]
Answer
607.2k+ views
Hint: Apply chain rule or substitution method to differentiate the given trigonometric function.
Given that
\[y = \sin (x + y)\]
Differentiate the given expression w.r.t. ‘x’\[\]
\[\dfrac{{dy}}{{dx}} = \cos (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)\] (Chain Rule)
\[\dfrac{{dy}}{{dx}} = \cos (x + y) + \cos (x + y)\dfrac{{dy}}{{dx}}\]…………. (i)
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \cos (x + y)} \right) = \cos (x + y)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]
Differentiate the expression (i) w.r.t. ‘x’
\[\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left\{ {\cos (x + y) + \cos (x + y)
\cdot \dfrac{{dy}}{{dx}}} \right\}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right) +
\left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)} \right\}\dfrac{{dy}}{{dx}} + \cos (x
+ y)\dfrac{{{d^2}y}}{{d{x^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right) + \left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)}
\right\}\dfrac{{dy}}{{dx}}\]
\[ - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\] take common in R.H.S.
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\dfrac{{dy}}{{dx}}} \right)^2}\] ……………. (ii)
Put the value of \[\dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]in expression (ii)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\left( {\dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}} \right)} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left(
{\dfrac{{1 - \cos (x + y) + \cos (x + y)}}{{1 - \cos (x + y)}}} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x +
y)\dfrac{1}{{{{\left( {1 - \cos (x + y)} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
\[\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
Note: You can also go through with \[y = \sin (x + y) = \sin x \cdot \cos y + \cos x \cdot \sin y\] and then differentiate.
Given that
\[y = \sin (x + y)\]
Differentiate the given expression w.r.t. ‘x’\[\]
\[\dfrac{{dy}}{{dx}} = \cos (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)\] (Chain Rule)
\[\dfrac{{dy}}{{dx}} = \cos (x + y) + \cos (x + y)\dfrac{{dy}}{{dx}}\]…………. (i)
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \cos (x + y)} \right) = \cos (x + y)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]
Differentiate the expression (i) w.r.t. ‘x’
\[\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left\{ {\cos (x + y) + \cos (x + y)
\cdot \dfrac{{dy}}{{dx}}} \right\}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right) +
\left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)} \right\}\dfrac{{dy}}{{dx}} + \cos (x
+ y)\dfrac{{{d^2}y}}{{d{x^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right) + \left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)}
\right\}\dfrac{{dy}}{{dx}}\]
\[ - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\] take common in R.H.S.
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\dfrac{{dy}}{{dx}}} \right)^2}\] ……………. (ii)
Put the value of \[\dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]in expression (ii)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\left( {\dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}} \right)} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left(
{\dfrac{{1 - \cos (x + y) + \cos (x + y)}}{{1 - \cos (x + y)}}} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x +
y)\dfrac{1}{{{{\left( {1 - \cos (x + y)} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
\[\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
Note: You can also go through with \[y = \sin (x + y) = \sin x \cdot \cos y + \cos x \cdot \sin y\] and then differentiate.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

