Answer
Verified
499.5k+ views
Hint: Apply chain rule or substitution method to differentiate the given trigonometric function.
Given that
\[y = \sin (x + y)\]
Differentiate the given expression w.r.t. ‘x’\[\]
\[\dfrac{{dy}}{{dx}} = \cos (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)\] (Chain Rule)
\[\dfrac{{dy}}{{dx}} = \cos (x + y) + \cos (x + y)\dfrac{{dy}}{{dx}}\]…………. (i)
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \cos (x + y)} \right) = \cos (x + y)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]
Differentiate the expression (i) w.r.t. ‘x’
\[\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left\{ {\cos (x + y) + \cos (x + y)
\cdot \dfrac{{dy}}{{dx}}} \right\}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right) +
\left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)} \right\}\dfrac{{dy}}{{dx}} + \cos (x
+ y)\dfrac{{{d^2}y}}{{d{x^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right) + \left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)}
\right\}\dfrac{{dy}}{{dx}}\]
\[ - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\] take common in R.H.S.
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\dfrac{{dy}}{{dx}}} \right)^2}\] ……………. (ii)
Put the value of \[\dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]in expression (ii)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\left( {\dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}} \right)} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left(
{\dfrac{{1 - \cos (x + y) + \cos (x + y)}}{{1 - \cos (x + y)}}} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x +
y)\dfrac{1}{{{{\left( {1 - \cos (x + y)} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
\[\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
Note: You can also go through with \[y = \sin (x + y) = \sin x \cdot \cos y + \cos x \cdot \sin y\] and then differentiate.
Given that
\[y = \sin (x + y)\]
Differentiate the given expression w.r.t. ‘x’\[\]
\[\dfrac{{dy}}{{dx}} = \cos (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)\] (Chain Rule)
\[\dfrac{{dy}}{{dx}} = \cos (x + y) + \cos (x + y)\dfrac{{dy}}{{dx}}\]…………. (i)
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \cos (x + y)} \right) = \cos (x + y)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]
Differentiate the expression (i) w.r.t. ‘x’
\[\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left\{ {\cos (x + y) + \cos (x + y)
\cdot \dfrac{{dy}}{{dx}}} \right\}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right) +
\left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)} \right\}\dfrac{{dy}}{{dx}} + \cos (x
+ y)\dfrac{{{d^2}y}}{{d{x^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right) + \left\{ { - \sin (x + y) \cdot \left( {1 + \dfrac{{dy}}{{dx}}} \right)}
\right\}\dfrac{{dy}}{{dx}}\]
\[ - \sin (x + y)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\] take common in R.H.S.
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y)\left( {1 +
\dfrac{{dy}}{{dx}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\dfrac{{dy}}{{dx}}} \right)^2}\] ……………. (ii)
Put the value of \[\dfrac{{dy}}{{dx}} = \dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}\]in expression (ii)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left( {1 +
\left( {\dfrac{{\cos (x + y)}}{{1 - \cos (x + y)}}} \right)} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x + y){\left(
{\dfrac{{1 - \cos (x + y) + \cos (x + y)}}{{1 - \cos (x + y)}}} \right)^2}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\left( {1 - \cos (x + y)} \right) = - \sin (x +
y)\dfrac{1}{{{{\left( {1 - \cos (x + y)} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
\[\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\sin (x + y)}}{{{{\left( {1 - \cos (x + y)}
\right)}^3}}}\]
Note: You can also go through with \[y = \sin (x + y) = \sin x \cdot \cos y + \cos x \cdot \sin y\] and then differentiate.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it