
If ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers such that ${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$, then:
(a) \[{{z}_{1}}\overline{{{z}_{2}}}\] is purely imaginary.
(b) \[\dfrac{{{z}_{1}}}{{{z}_{2}}}\] is purely imaginary.
(c) \[{{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=0\]
(d) $O,{{z}_{1}},{{z}_{2}}$ are vertices of a right angle triangle.
Answer
518.4k+ views
Hint: Assume ${{z}_{1}}={{x}_{1}}+i{{y}_{1}}$ and ${{z}_{2}}={{x}_{2}}+i{{y}_{2}}$ as the two complex numbers where ${{x}_{1}},{{y}_{1}}$ are the real, imaginary part if ${{z}_{1}}$ respectively and ${{x}_{2}},{{y}_{2}}$ are the real and imaginary part of ${{z}_{2}}$ respectively. Now, write their conjugates as $\overline{{{z}_{1}}}={{x}_{1}}-i{{y}_{1}}$ and $\overline{{{z}_{2}}}={{x}_{2}}-i{{y}_{2}}$. Using the relation given between the modulus of these complex numbers form a relation between ${{x}_{1}},{{y}_{1}},{{x}_{2}},{{y}_{2}}$. Use the formula ${{\left| z \right|}^{2}}={{x}^{2}}+{{y}^{2}}$. Now, check each option one by one. For option (a) take the product \[{{z}_{1}}\overline{{{z}_{2}}}\] and see if their real part is 0. For option (b) use the result obtained in (a). For option (c) solve the L.H.S and see if it is equal to 0 in the R.H.S. for option (d) use the result obtained in option (b) to prove that $\arg \left( {{z}_{1}} \right)-\arg \left( {{z}_{2}} \right)=\dfrac{\pi }{2}$ by using the formulas $arg\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\arg \left( {{z}_{1}} \right)-\arg \left( {{z}_{2}} \right)$ and $\arg \left( z \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( z \right)}{\operatorname{Re}\left( z \right)} \right)$.
Complete step by step solution:
Here we have been provided with two complex numbers ${{z}_{1}}$ and ${{z}_{2}}$ with the relation ${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$. We are to find the correct option(s).
Now, let use assume these complex numbers as ${{z}_{1}}={{x}_{1}}+i{{y}_{1}}$ and ${{z}_{2}}={{x}_{2}}+i{{y}_{2}}$ where ${{x}_{1}},{{y}_{1}}$ are the real, imaginary part if ${{z}_{1}}$ respectively and ${{x}_{2}},{{y}_{2}}$ are the real and imaginary part of ${{z}_{2}}$ respectively. We know that modulus of a complex number is given as ${{\left| z \right|}^{2}}={{x}^{2}}+{{y}^{2}}$, so considering the given relation we get,
\[\begin{align}
& \Rightarrow {{\left| \left( {{x}_{1}}+i{{y}_{1}} \right)+\left( {{x}_{2}}+i{{y}_{2}} \right) \right|}^{2}}={{\left| \left( {{x}_{1}}+i{{y}_{1}} \right) \right|}^{2}}+{{\left| \left( {{x}_{2}}+i{{y}_{2}} \right) \right|}^{2}} \\
& \Rightarrow {{\left| \left( {{x}_{1}}+{{x}_{2}} \right)+i\left( {{y}_{1}}+{{y}_{2}} \right) \right|}^{2}}={{\left| \left( {{x}_{1}}+i{{y}_{1}} \right) \right|}^{2}}+{{\left| \left( {{x}_{2}}+i{{y}_{2}} \right) \right|}^{2}} \\
& \Rightarrow {{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}=\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)+\left( {{x}_{2}}^{2}+{{y}_{2}}^{2} \right) \\
\end{align}\]
Expanding the L.H.S by using the algebraic identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] we get,
\[\begin{align}
& \Rightarrow {{x}_{1}}^{2}+{{x}_{2}}^{2}+2{{x}_{1}}{{x}_{2}}+{{y}_{1}}^{2}+{{y}_{2}}^{2}+2{{y}_{1}}{{y}_{2}}={{x}_{1}}^{2}+{{y}_{1}}^{2}+{{x}_{2}}^{2}+{{y}_{2}}^{2} \\
& \Rightarrow 2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)=0 \\
& \Rightarrow \left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)=0...............\left( i \right) \\
\end{align}\]
Now, let us check each option one by one.
(a) Here we have to consider the product \[{{z}_{1}}\overline{{{z}_{2}}}\], where \[\overline{z}\] denotes the conjugate of $z$ obtained by changing the sign between the real and imaginary part of $z$, and check if it is purely imaginary. This product will be purely imaginary only if the real part will be 0 and there will be only imaginary part.
\[\begin{align}
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}=\left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}={{x}_{1}}{{x}_{2}}-i{{x}_{1}}{{y}_{2}}+i{{y}_{1}}{{x}_{2}}-{{i}^{2}}{{y}_{1}}{{y}_{2}} \\
\end{align}\]
We know that \[{{i}^{2}}=-1\] so we get,
\[\begin{align}
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}={{x}_{1}}{{x}_{2}}-i{{x}_{1}}{{y}_{2}}+i{{y}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}=\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right) \\
\end{align}\]
Using relation (i) we get,
\[\therefore {{z}_{1}}\overline{{{z}_{2}}}=-i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right)\]
Clearly we can see that here we have only imaginary part so the product \[{{z}_{1}}\overline{{{z}_{2}}}\] is purely imaginary.
(b) Here we have to consider the relation \[\dfrac{{{z}_{1}}}{{{z}_{2}}}\] and check if this is purely imaginary or not.
\[\Rightarrow \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{\left( {{x}_{1}}+i{{y}_{1}} \right)}{\left( {{x}_{2}}+i{{y}_{2}} \right)}\]
Rationalizing the denominator by multiplying and dividing with \[\left( {{x}_{2}}-i{{y}_{2}} \right)\] we get,
\[\Rightarrow \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{\left( {{x}_{1}}+i{{y}_{1}} \right)}{\left( {{x}_{2}}+i{{y}_{2}} \right)}\times \dfrac{\left( {{x}_{2}}-i{{y}_{2}} \right)}{\left( {{x}_{2}}-i{{y}_{2}} \right)}\]
We can write \[\left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right)={{z}_{1}}\overline{{{z}_{2}}}\] and \[\left( {{x}_{2}}+i{{y}_{2}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right)={{\left| {{z}_{2}} \right|}^{2}}\] so we get,
\[\therefore \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{{{z}_{1}}\overline{{{z}_{2}}}}{{{x}_{2}}^{2}+{{y}_{2}}^{2}}\]
Clearly we can see that here the denominator is real and by using the conclusion of option (a) numerator is imaginary so \[\dfrac{{{z}_{1}}}{{{z}_{2}}}\] will be purely imaginary.
(c) Here we have to check the validation of the relation \[{{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=0\]. So let us simplify the L.H.S.
\[\Rightarrow {{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=\left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right)+\left( {{x}_{1}}-i{{y}_{1}} \right)\left( {{x}_{2}}+i{{y}_{2}} \right)\]
On simplifying and using relation (i) and the relation obtained in option (a) we get,
\[\begin{align}
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=-i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right)+i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=0 \\
& \therefore L.H.S=R.H.S \\
\end{align}\]
(d) Here we have to if $O,{{z}_{1}},{{z}_{2}}$ are vertices of a right angle triangle. This condition will be fulfilled only when the angle between the line joining the O, ${{z}_{1}}$ and the line joining O, ${{z}_{2}}$ in the argand plane will be $\dfrac{\pi }{2}$. In other words, the difference between the arguments of ${{z}_{1}}$ and ${{z}_{2}}$ should be $\dfrac{\pi }{2}$ where $\arg \left( z \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( z \right)}{\operatorname{Re}\left( z \right)} \right)$. Here Im (z) and Re (z) denotes the imaginary part and real part of z respectively.
Using the result of option (b) we have we can say that $\operatorname{Re}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=0$ so we have,
\[\begin{align}
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}{\operatorname{Re}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)} \right) \\
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}{0} \right) \\
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)={{\tan }^{-1}}\infty \\
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Using the formula $arg\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\arg \left( {{z}_{1}} \right)-\arg \left( {{z}_{2}} \right)$ we get,
$\therefore \arg \left( {{z}_{1}} \right)-\arg \left( {{z}_{2}} \right)=\dfrac{\pi }{2}$
Therefore angle between $O{{z}_{1}}$ and $O{{z}_{2}}$ is 90 degrees so $O,{{z}_{1}},{{z}_{2}}$ are the vertices of the right triangle.
Hence all the options are correct.
Note: Remember the basic terms of complex numbers like conjugate, argument, modulus etc. We do not represent complex numbers on a real plane but there is a complex plane for their representation. Note that if the imaginary part of a complex number is 0 then it is called purely real. Remember the formulas of argument of complex numbers as they are helpful in solving angle based problems.
Complete step by step solution:
Here we have been provided with two complex numbers ${{z}_{1}}$ and ${{z}_{2}}$ with the relation ${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$. We are to find the correct option(s).
Now, let use assume these complex numbers as ${{z}_{1}}={{x}_{1}}+i{{y}_{1}}$ and ${{z}_{2}}={{x}_{2}}+i{{y}_{2}}$ where ${{x}_{1}},{{y}_{1}}$ are the real, imaginary part if ${{z}_{1}}$ respectively and ${{x}_{2}},{{y}_{2}}$ are the real and imaginary part of ${{z}_{2}}$ respectively. We know that modulus of a complex number is given as ${{\left| z \right|}^{2}}={{x}^{2}}+{{y}^{2}}$, so considering the given relation we get,
\[\begin{align}
& \Rightarrow {{\left| \left( {{x}_{1}}+i{{y}_{1}} \right)+\left( {{x}_{2}}+i{{y}_{2}} \right) \right|}^{2}}={{\left| \left( {{x}_{1}}+i{{y}_{1}} \right) \right|}^{2}}+{{\left| \left( {{x}_{2}}+i{{y}_{2}} \right) \right|}^{2}} \\
& \Rightarrow {{\left| \left( {{x}_{1}}+{{x}_{2}} \right)+i\left( {{y}_{1}}+{{y}_{2}} \right) \right|}^{2}}={{\left| \left( {{x}_{1}}+i{{y}_{1}} \right) \right|}^{2}}+{{\left| \left( {{x}_{2}}+i{{y}_{2}} \right) \right|}^{2}} \\
& \Rightarrow {{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}=\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)+\left( {{x}_{2}}^{2}+{{y}_{2}}^{2} \right) \\
\end{align}\]
Expanding the L.H.S by using the algebraic identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] we get,
\[\begin{align}
& \Rightarrow {{x}_{1}}^{2}+{{x}_{2}}^{2}+2{{x}_{1}}{{x}_{2}}+{{y}_{1}}^{2}+{{y}_{2}}^{2}+2{{y}_{1}}{{y}_{2}}={{x}_{1}}^{2}+{{y}_{1}}^{2}+{{x}_{2}}^{2}+{{y}_{2}}^{2} \\
& \Rightarrow 2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)=0 \\
& \Rightarrow \left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)=0...............\left( i \right) \\
\end{align}\]
Now, let us check each option one by one.
(a) Here we have to consider the product \[{{z}_{1}}\overline{{{z}_{2}}}\], where \[\overline{z}\] denotes the conjugate of $z$ obtained by changing the sign between the real and imaginary part of $z$, and check if it is purely imaginary. This product will be purely imaginary only if the real part will be 0 and there will be only imaginary part.
\[\begin{align}
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}=\left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}={{x}_{1}}{{x}_{2}}-i{{x}_{1}}{{y}_{2}}+i{{y}_{1}}{{x}_{2}}-{{i}^{2}}{{y}_{1}}{{y}_{2}} \\
\end{align}\]
We know that \[{{i}^{2}}=-1\] so we get,
\[\begin{align}
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}={{x}_{1}}{{x}_{2}}-i{{x}_{1}}{{y}_{2}}+i{{y}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}=\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right) \\
\end{align}\]
Using relation (i) we get,
\[\therefore {{z}_{1}}\overline{{{z}_{2}}}=-i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right)\]
Clearly we can see that here we have only imaginary part so the product \[{{z}_{1}}\overline{{{z}_{2}}}\] is purely imaginary.
(b) Here we have to consider the relation \[\dfrac{{{z}_{1}}}{{{z}_{2}}}\] and check if this is purely imaginary or not.
\[\Rightarrow \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{\left( {{x}_{1}}+i{{y}_{1}} \right)}{\left( {{x}_{2}}+i{{y}_{2}} \right)}\]
Rationalizing the denominator by multiplying and dividing with \[\left( {{x}_{2}}-i{{y}_{2}} \right)\] we get,
\[\Rightarrow \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{\left( {{x}_{1}}+i{{y}_{1}} \right)}{\left( {{x}_{2}}+i{{y}_{2}} \right)}\times \dfrac{\left( {{x}_{2}}-i{{y}_{2}} \right)}{\left( {{x}_{2}}-i{{y}_{2}} \right)}\]
We can write \[\left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right)={{z}_{1}}\overline{{{z}_{2}}}\] and \[\left( {{x}_{2}}+i{{y}_{2}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right)={{\left| {{z}_{2}} \right|}^{2}}\] so we get,
\[\therefore \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{{{z}_{1}}\overline{{{z}_{2}}}}{{{x}_{2}}^{2}+{{y}_{2}}^{2}}\]
Clearly we can see that here the denominator is real and by using the conclusion of option (a) numerator is imaginary so \[\dfrac{{{z}_{1}}}{{{z}_{2}}}\] will be purely imaginary.
(c) Here we have to check the validation of the relation \[{{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=0\]. So let us simplify the L.H.S.
\[\Rightarrow {{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=\left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}-i{{y}_{2}} \right)+\left( {{x}_{1}}-i{{y}_{1}} \right)\left( {{x}_{2}}+i{{y}_{2}} \right)\]
On simplifying and using relation (i) and the relation obtained in option (a) we get,
\[\begin{align}
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=-i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right)+i\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{2}}}+\overline{{{z}_{1}}}{{z}_{2}}=0 \\
& \therefore L.H.S=R.H.S \\
\end{align}\]
(d) Here we have to if $O,{{z}_{1}},{{z}_{2}}$ are vertices of a right angle triangle. This condition will be fulfilled only when the angle between the line joining the O, ${{z}_{1}}$ and the line joining O, ${{z}_{2}}$ in the argand plane will be $\dfrac{\pi }{2}$. In other words, the difference between the arguments of ${{z}_{1}}$ and ${{z}_{2}}$ should be $\dfrac{\pi }{2}$ where $\arg \left( z \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( z \right)}{\operatorname{Re}\left( z \right)} \right)$. Here Im (z) and Re (z) denotes the imaginary part and real part of z respectively.
Using the result of option (b) we have we can say that $\operatorname{Re}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=0$ so we have,
\[\begin{align}
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}{\operatorname{Re}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)} \right) \\
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}{0} \right) \\
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)={{\tan }^{-1}}\infty \\
& \Rightarrow \arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Using the formula $arg\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\arg \left( {{z}_{1}} \right)-\arg \left( {{z}_{2}} \right)$ we get,
$\therefore \arg \left( {{z}_{1}} \right)-\arg \left( {{z}_{2}} \right)=\dfrac{\pi }{2}$
Therefore angle between $O{{z}_{1}}$ and $O{{z}_{2}}$ is 90 degrees so $O,{{z}_{1}},{{z}_{2}}$ are the vertices of the right triangle.
Hence all the options are correct.
Note: Remember the basic terms of complex numbers like conjugate, argument, modulus etc. We do not represent complex numbers on a real plane but there is a complex plane for their representation. Note that if the imaginary part of a complex number is 0 then it is called purely real. Remember the formulas of argument of complex numbers as they are helpful in solving angle based problems.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

