
If \[y=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}-\dfrac{1}{2}{{\tan }^{-1}}x\] then \[\dfrac{dy}{dx}\] is
$\begin{align}
& a)\dfrac{{{x}^{2}}}{1-{{x}^{4}}} \\
& b)\dfrac{2{{x}^{2}}}{1-{{x}^{4}}} \\
& c)\dfrac{{{x}^{2}}}{2\left( 1-{{x}^{2}} \right)} \\
& d)\text{ None of these}\text{. } \\
\end{align}$
Answer
576k+ views
Hint: Now we are given with an equation. Let us first consider $f\left( x \right)=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ using the properties of log which says $\log {{a}^{n}}=n\log a$ and $\log \dfrac{a}{b}=\log a-\log b$ we simplify the equation. Substitute this value of $\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ in the given equation and differentiate the whole equation. Now we know that the differentiation of $\log \left( a+bx \right)=\dfrac{1}{b}\log \left( \dfrac{1}{a+bx} \right)$ and the differentiation of ${{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}$ . Now we will simplify the equation obtained and hence arrive at the required answer.
Complete step-by-step answer:
Now we are given that \[y=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}-\dfrac{1}{2}{{\tan }^{-1}}x\]
Let us let us say $f\left( x \right)=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ .
Now we know that $\log {{a}^{n}}=n\log a$ .
Hence using this property we can write \[\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}=\dfrac{1}{4}\left( \log \left( \dfrac{1+x}{1-x} \right) \right).........................\left( 1 \right)\]
Now \[\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}=\dfrac{1}{4}\left( \log \left( \dfrac{1+x}{1-x} \right) \right)\]
Now we also know that $\log \dfrac{a}{b}=\log a-\log b$ .
Hence using this property in the obtained equation we get, \[\dfrac{1}{4}\left( \log \left( \dfrac{1+x}{1-x} \right) \right)=\dfrac{1}{4}\left[ \log \left( 1+x \right)-\log \left( 1-x \right) \right]\] .
Now let us substitute the value from above equation in equation (1) we get,
$\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}=\dfrac{1}{4}\left[ \log \left( 1+x \right)-\log \left( 1-x \right) \right]................\left( 2 \right)$
Now let us again consider the given equation \[y=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}-\dfrac{1}{2}{{\tan }^{-1}}x\]
Substituting the value of $\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ from equation (2) in the above equation we get,
$\begin{align}
& y=\dfrac{1}{4}\left[ \log \left( 1+x \right)-\log \left( 1-x \right) \right]-\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow y=\dfrac{1}{4}\log \left( 1+x \right)-\dfrac{1}{4}\log \left( 1-x \right)-\dfrac{1}{2}{{\tan }^{-1}}x \\
\end{align}$
Now differentiating on both sides we get,
$\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{4}\log \left( 1+x \right) \right)}{dx}-\dfrac{d\left( \dfrac{1}{4}\log \left( 1-x \right) \right)}{dx}-\dfrac{d\left( \dfrac{1}{2}{{\tan }^{-1}}x \right)}{dx}$
Now we know that $\dfrac{d\left( cf\left( x \right) \right)}{dx}=c\dfrac{d\left( f\left( x \right) \right)}{dx}$ where c is the constant. Hence using this property we get,
$\dfrac{dy}{dx}=\dfrac{1}{4}\dfrac{d\left( \log \left( 1+x \right) \right)}{dx}-\dfrac{1}{4}\dfrac{d\left( \log \left( 1-x \right) \right)}{dx}-\dfrac{1}{2}\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}$ .
Now we know that differentiation of $\log \left( a+bx \right)=\dfrac{1}{b}\log \left( \dfrac{1}{a+bx} \right)$ Hence we get,
\[\dfrac{dy}{dx}=\dfrac{1}{4}\times \dfrac{1}{1+x}-\dfrac{1}{4}\times \dfrac{1}{1-x}\times \left( -1 \right)-\dfrac{1}{2}\times \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}\] .
Now we also know that \[\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] .
Hence we get,
\[\dfrac{dy}{dx}=\dfrac{1}{4}\times \left( \dfrac{1}{1+x}+\dfrac{1}{1-x} \right)-\dfrac{1}{2}\times \dfrac{1}{1+{{x}^{2}}}\]
Now taking LCM of the given fractions we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{4}\times \left( \dfrac{1-x+1+x}{\left( 1+x \right)\left( 1-x \right)} \right)-\dfrac{1}{2\left( 1+{{x}^{2}} \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{4}\times \left( \dfrac{2}{\left( 1+x \right)\left( 1-x \right)} \right)-\dfrac{1}{2\left( 1+{{x}^{2}} \right)} \\
\end{align}\]
Now we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}\times \left( \dfrac{1}{1-{{x}^{2}}} \right)-\dfrac{1}{2\left( 1+{{x}^{2}} \right)}\]
Now taking LCM we get,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\left( \dfrac{2\left( 1+{{x}^{2}} \right)-2\left( 1-{{x}^{2}} \right)}{2\left( 1-{{x}^{2}} \right)2\left( 1+{{x}^{2}} \right)} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\left( \dfrac{2\left( 1+{{x}^{2}}-1+{{x}^{2}} \right)}{4\left( 1-{{x}^{2}} \right)\left( 1+{{x}^{2}} \right)} \right) \\
\end{align}\]
Now again using the formula ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ we get,
\[\begin{align}
& \dfrac{dy}{dx}=\left( \dfrac{2{{x}^{2}}}{2\left( 1-{{x}^{4}} \right)} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{1-{{x}^{4}}} \\
\end{align}\]
Hence we have the value of $\dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{1-{{x}^{2}}}$
So, the correct answer is “Option a)”.
Note: Now we also know the chain rule of differentiation which says $\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{dx}=f'\left( f\left( x \right) \right).g'\left( x \right)$ . We can also use this to solve the given equation. We can use chain rule to differentiate the function $f\left( x \right)=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ instead of simplifying with the help of properties of log. Also note that to do so we will require the formula $\dfrac{d\left( \dfrac{f}{g} \right)}{dx}=\dfrac{f'g-g'f}{{{g}^{2}}}$ .
Complete step-by-step answer:
Now we are given that \[y=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}-\dfrac{1}{2}{{\tan }^{-1}}x\]
Let us let us say $f\left( x \right)=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ .
Now we know that $\log {{a}^{n}}=n\log a$ .
Hence using this property we can write \[\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}=\dfrac{1}{4}\left( \log \left( \dfrac{1+x}{1-x} \right) \right).........................\left( 1 \right)\]
Now \[\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}=\dfrac{1}{4}\left( \log \left( \dfrac{1+x}{1-x} \right) \right)\]
Now we also know that $\log \dfrac{a}{b}=\log a-\log b$ .
Hence using this property in the obtained equation we get, \[\dfrac{1}{4}\left( \log \left( \dfrac{1+x}{1-x} \right) \right)=\dfrac{1}{4}\left[ \log \left( 1+x \right)-\log \left( 1-x \right) \right]\] .
Now let us substitute the value from above equation in equation (1) we get,
$\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}=\dfrac{1}{4}\left[ \log \left( 1+x \right)-\log \left( 1-x \right) \right]................\left( 2 \right)$
Now let us again consider the given equation \[y=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}-\dfrac{1}{2}{{\tan }^{-1}}x\]
Substituting the value of $\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ from equation (2) in the above equation we get,
$\begin{align}
& y=\dfrac{1}{4}\left[ \log \left( 1+x \right)-\log \left( 1-x \right) \right]-\dfrac{1}{2}{{\tan }^{-1}}x \\
& \Rightarrow y=\dfrac{1}{4}\log \left( 1+x \right)-\dfrac{1}{4}\log \left( 1-x \right)-\dfrac{1}{2}{{\tan }^{-1}}x \\
\end{align}$
Now differentiating on both sides we get,
$\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{4}\log \left( 1+x \right) \right)}{dx}-\dfrac{d\left( \dfrac{1}{4}\log \left( 1-x \right) \right)}{dx}-\dfrac{d\left( \dfrac{1}{2}{{\tan }^{-1}}x \right)}{dx}$
Now we know that $\dfrac{d\left( cf\left( x \right) \right)}{dx}=c\dfrac{d\left( f\left( x \right) \right)}{dx}$ where c is the constant. Hence using this property we get,
$\dfrac{dy}{dx}=\dfrac{1}{4}\dfrac{d\left( \log \left( 1+x \right) \right)}{dx}-\dfrac{1}{4}\dfrac{d\left( \log \left( 1-x \right) \right)}{dx}-\dfrac{1}{2}\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}$ .
Now we know that differentiation of $\log \left( a+bx \right)=\dfrac{1}{b}\log \left( \dfrac{1}{a+bx} \right)$ Hence we get,
\[\dfrac{dy}{dx}=\dfrac{1}{4}\times \dfrac{1}{1+x}-\dfrac{1}{4}\times \dfrac{1}{1-x}\times \left( -1 \right)-\dfrac{1}{2}\times \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}\] .
Now we also know that \[\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] .
Hence we get,
\[\dfrac{dy}{dx}=\dfrac{1}{4}\times \left( \dfrac{1}{1+x}+\dfrac{1}{1-x} \right)-\dfrac{1}{2}\times \dfrac{1}{1+{{x}^{2}}}\]
Now taking LCM of the given fractions we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{4}\times \left( \dfrac{1-x+1+x}{\left( 1+x \right)\left( 1-x \right)} \right)-\dfrac{1}{2\left( 1+{{x}^{2}} \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{4}\times \left( \dfrac{2}{\left( 1+x \right)\left( 1-x \right)} \right)-\dfrac{1}{2\left( 1+{{x}^{2}} \right)} \\
\end{align}\]
Now we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}\times \left( \dfrac{1}{1-{{x}^{2}}} \right)-\dfrac{1}{2\left( 1+{{x}^{2}} \right)}\]
Now taking LCM we get,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\left( \dfrac{2\left( 1+{{x}^{2}} \right)-2\left( 1-{{x}^{2}} \right)}{2\left( 1-{{x}^{2}} \right)2\left( 1+{{x}^{2}} \right)} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\left( \dfrac{2\left( 1+{{x}^{2}}-1+{{x}^{2}} \right)}{4\left( 1-{{x}^{2}} \right)\left( 1+{{x}^{2}} \right)} \right) \\
\end{align}\]
Now again using the formula ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ we get,
\[\begin{align}
& \dfrac{dy}{dx}=\left( \dfrac{2{{x}^{2}}}{2\left( 1-{{x}^{4}} \right)} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{1-{{x}^{4}}} \\
\end{align}\]
Hence we have the value of $\dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{1-{{x}^{2}}}$
So, the correct answer is “Option a)”.
Note: Now we also know the chain rule of differentiation which says $\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{dx}=f'\left( f\left( x \right) \right).g'\left( x \right)$ . We can also use this to solve the given equation. We can use chain rule to differentiate the function $f\left( x \right)=\log {{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{4}}}$ instead of simplifying with the help of properties of log. Also note that to do so we will require the formula $\dfrac{d\left( \dfrac{f}{g} \right)}{dx}=\dfrac{f'g-g'f}{{{g}^{2}}}$ .
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

