# If y =$\dfrac{1}{{\sqrt[3]{{{\text{cosec x + cot x}}}}}}$, find $\dfrac{{{\text{dx}}}}{{{\text{dy}}}}$ .

Last updated date: 26th Mar 2023

•

Total views: 306k

•

Views today: 7.83k

Answer

Verified

306k+ views

Hint: Look into the table of derivatives of trigonometric functions for cosec x and cot x. Convert the root into power and then differentiate it.

Complete step-by-step answer:

Given Data,

y =$\dfrac{1}{{\sqrt[3]{{{\text{cosec x + cot x}}}}}}$

Transform y such that there is no cube root in the equation, for the ease of solving

$\Rightarrow$ y = $\dfrac{1}{{{{\left( {\cos {\text{ec x + cot x}}} \right)}^{\dfrac{1}{3}}}}} = {\left( {\cos {\text{ec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$

Differentiating y with respect to x

$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$

For a function f = (x + 1)$^2$, $\dfrac{{{\text{df}}}}{{{\text{dx}}}}{\text{ becomes 2(x + 1}}{{\text{)}}^{2 - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{x + 1)}}$

Similarly here,

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3} - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cosec x + cot x}}} \right)$

From the table of derivatives of trigonometric functions,

$

\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{cosec x) = - cosec(x)cot(x)}} \\

\dfrac{{\text{d}}}{{{\text{dx}}}}(\cot {\text{x) = - cose}}{{\text{c}}^2}({\text{x)}} \\

\\

$

Now,

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{ - cosec x cot x - cose}}{{\text{c}}^2}{\text{ x}}} \right)$

Take –cosec x common,

$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{cot x + cosec x}}} \right)$

Adding powers of similar terms, we get -------- (${{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{{\text{m + n}}}}$)

$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $

\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}} \\

\\

$

= $\dfrac{{{\text{cosec x}}}}{{3{{\left( {{\text{cosec x + cot x}}} \right)}^{\dfrac{1}{3}}}}}$

Hence the answer.

Note: In order to solve these types of questions the key is to have a good idea on how to approach the differentiation of a wide variety of functions including trigonometric functions. Then with the help of the derivatives of cosec and cot functions the problem is further simplified. Then it’s all about rearranging the terms obtained using a few basic number properties to arrive at the answer.

Complete step-by-step answer:

Given Data,

y =$\dfrac{1}{{\sqrt[3]{{{\text{cosec x + cot x}}}}}}$

Transform y such that there is no cube root in the equation, for the ease of solving

$\Rightarrow$ y = $\dfrac{1}{{{{\left( {\cos {\text{ec x + cot x}}} \right)}^{\dfrac{1}{3}}}}} = {\left( {\cos {\text{ec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$

Differentiating y with respect to x

$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$

For a function f = (x + 1)$^2$, $\dfrac{{{\text{df}}}}{{{\text{dx}}}}{\text{ becomes 2(x + 1}}{{\text{)}}^{2 - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{x + 1)}}$

Similarly here,

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3} - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cosec x + cot x}}} \right)$

From the table of derivatives of trigonometric functions,

$

\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{cosec x) = - cosec(x)cot(x)}} \\

\dfrac{{\text{d}}}{{{\text{dx}}}}(\cot {\text{x) = - cose}}{{\text{c}}^2}({\text{x)}} \\

\\

$

Now,

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{ - cosec x cot x - cose}}{{\text{c}}^2}{\text{ x}}} \right)$

Take –cosec x common,

$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{cot x + cosec x}}} \right)$

Adding powers of similar terms, we get -------- (${{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{{\text{m + n}}}}$)

$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $

\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}} \\

\\

$

= $\dfrac{{{\text{cosec x}}}}{{3{{\left( {{\text{cosec x + cot x}}} \right)}^{\dfrac{1}{3}}}}}$

Hence the answer.

Note: In order to solve these types of questions the key is to have a good idea on how to approach the differentiation of a wide variety of functions including trigonometric functions. Then with the help of the derivatives of cosec and cot functions the problem is further simplified. Then it’s all about rearranging the terms obtained using a few basic number properties to arrive at the answer.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?