Answer
Verified
492.9k+ views
Hint: Look into the table of derivatives of trigonometric functions for cosec x and cot x. Convert the root into power and then differentiate it.
Complete step-by-step answer:
Given Data,
y =$\dfrac{1}{{\sqrt[3]{{{\text{cosec x + cot x}}}}}}$
Transform y such that there is no cube root in the equation, for the ease of solving
$\Rightarrow$ y = $\dfrac{1}{{{{\left( {\cos {\text{ec x + cot x}}} \right)}^{\dfrac{1}{3}}}}} = {\left( {\cos {\text{ec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
Differentiating y with respect to x
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
For a function f = (x + 1)$^2$, $\dfrac{{{\text{df}}}}{{{\text{dx}}}}{\text{ becomes 2(x + 1}}{{\text{)}}^{2 - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{x + 1)}}$
Similarly here,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3} - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cosec x + cot x}}} \right)$
From the table of derivatives of trigonometric functions,
$
\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{cosec x) = - cosec(x)cot(x)}} \\
\dfrac{{\text{d}}}{{{\text{dx}}}}(\cot {\text{x) = - cose}}{{\text{c}}^2}({\text{x)}} \\
\\
$
Now,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{ - cosec x cot x - cose}}{{\text{c}}^2}{\text{ x}}} \right)$
Take –cosec x common,
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{cot x + cosec x}}} \right)$
Adding powers of similar terms, we get -------- (${{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{{\text{m + n}}}}$)
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $
\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}} \\
\\
$
= $\dfrac{{{\text{cosec x}}}}{{3{{\left( {{\text{cosec x + cot x}}} \right)}^{\dfrac{1}{3}}}}}$
Hence the answer.
Note: In order to solve these types of questions the key is to have a good idea on how to approach the differentiation of a wide variety of functions including trigonometric functions. Then with the help of the derivatives of cosec and cot functions the problem is further simplified. Then it’s all about rearranging the terms obtained using a few basic number properties to arrive at the answer.
Complete step-by-step answer:
Given Data,
y =$\dfrac{1}{{\sqrt[3]{{{\text{cosec x + cot x}}}}}}$
Transform y such that there is no cube root in the equation, for the ease of solving
$\Rightarrow$ y = $\dfrac{1}{{{{\left( {\cos {\text{ec x + cot x}}} \right)}^{\dfrac{1}{3}}}}} = {\left( {\cos {\text{ec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
Differentiating y with respect to x
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\text{d}}}{{{\text{dx}}}}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}}$
For a function f = (x + 1)$^2$, $\dfrac{{{\text{df}}}}{{{\text{dx}}}}{\text{ becomes 2(x + 1}}{{\text{)}}^{2 - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{x + 1)}}$
Similarly here,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3} - 1}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cosec x + cot x}}} \right)$
From the table of derivatives of trigonometric functions,
$
\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{cosec x) = - cosec(x)cot(x)}} \\
\dfrac{{\text{d}}}{{{\text{dx}}}}(\cot {\text{x) = - cose}}{{\text{c}}^2}({\text{x)}} \\
\\
$
Now,
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $ - \dfrac{1}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{ - cosec x cot x - cose}}{{\text{c}}^2}{\text{ x}}} \right)$
Take –cosec x common,
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{4}{3}}}\left( {{\text{cot x + cosec x}}} \right)$
Adding powers of similar terms, we get -------- (${{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{{\text{m + n}}}}$)
$\Rightarrow$ $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ = $
\dfrac{{{\text{cosec x}}}}{3}{\left( {{\text{cosec x + cot x}}} \right)^{ - \dfrac{1}{3}}} \\
\\
$
= $\dfrac{{{\text{cosec x}}}}{{3{{\left( {{\text{cosec x + cot x}}} \right)}^{\dfrac{1}{3}}}}}$
Hence the answer.
Note: In order to solve these types of questions the key is to have a good idea on how to approach the differentiation of a wide variety of functions including trigonometric functions. Then with the help of the derivatives of cosec and cot functions the problem is further simplified. Then it’s all about rearranging the terms obtained using a few basic number properties to arrive at the answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE